Workflows with HTCondor’s
DAGMan

Tuesday, Aug 10

Lauren Michael, Imichael@wisc.edu

——

o Goals for this Session

 Why create a workflow?

e Describe workflows as directed acyclic graphs
(DAGS)

 Workflow execution via DAGMan (DAG Manager)
 Node-level options in a DAG

 Modular organization of DAG components
o Additional DAGMan Features

. Automation!

e Objective: Submit jobs
in a particular order,
automatically. A
101213 EBEN
e Especially if: Need to - - - -
replicate the same \\l /
workflow multiple times
in the future.

OSG Virtual School 2021

—

= —

—— ... DAG ="directed acyclic graph”

e topological ordering of
vertices (“nodes”) is
established by directional
connections (“edges”)

e “acyclic” aspect requires a
start and end, with no looped
repetition

— can contain cyclic

subcomponents, covered in
later slides for DAG workflows

Wikimedia Commons

OSG Virtual School 2021 wikipedia.org/wiki/Directed acyclic graph 4

https://en.wikipedia.org/wiki/Directed_acyclic_graph

pen Science Grid

DESCRIBING WORKFLOWS
WITH DAGMAN

Open Science Grid

DAGMan in the HTCondor Manual

< > C (ﬂ https://htcondor.readthedocs.io/en/stable/users-manual/index.html

T

A HTCondor Manual o

;

Overview

B Users’ Manual

Welcome to HTCondor o
Introduction ©
Matchmaking with ClassAds

Running a Job: the Steps To Take

Submitting a Job °
Managing a Job o
Priorities and Preemption
Java Applications R

Parallel Applications (Including MPI
Applications)

(o]

SUDTTITSSTOTT CXAITIPTES

MPI Applications Within HTCondor’s Vanilla Universe

o DAGMan Applications

DAGMan Terminology

The DAG Input File: Basic Commands

Command Order

Node Job Submit File Contents

DAG Submission

File Paths in DAGs

DAG Monitoring and DAG Removal

Suspending a Running DAG

Advanced Features of DAGMan

The Rescue DAG

DAG Recovery

Visualizing DAGs with dot

Capturing the Status of Nodes in a File

A Machine-Readable Event History, the jobstate.log File
Status Information for the DAG in a ClassAd

Utilizing the Power of DAGMan for Large Numbers of Jobs
Workflow Metrics

DAGMan and Accounting Groups

o Virtual Machine Applications

DAGMan Applications &
& Read the Docs v o

OSG Virtual School 2021

The Submit Description File
Checkpoints

o e

https://htcondor.readthedocs.io/en/latest/users-manual/dagman-workflows.html

https://htcondor.readthedocs.io/en/latest/users-manual/dagman-workflows.html

~— _. An Example HTC Workflow

e User must
communicate the A
“nodes” and directional
“edges” of the DAG

N

OSG Virtual School 2021

eeeeeeeeeeeeee

« The DAG input file n

will communicate the %
“nodes” and directional
“edges” of the DAG m E E

N

OSG Virtual School 2021

T,

25 Basic DAG input file:
wmieees JOB nodes, PARENT-CHILD edges

my .dag n

JOB A A.sub

JOB Bl Bl.sub

JOB B2 B2.sub %

JOB B3 B3.sub

JOB C C.sub

PARENT A CHILD Bl B2 B3 m E E

PARENT Bl B2 B3 CHILD C

« Node names will be used by \\l
various DAG features to modify
their execution by DAGMan.

OSG Virtual School 2021

Basic DAG input file:

——

o JOB nodes, PARENT-CHILD edges
my .dag (dag dir)/
JOB A A.sub A.sub Bl.sub
JOB Bl Bl.sub B2.sub B3.sub
JOB B2 B2.sub C.sub my .dag

JOB B3 B3.sub (other job files)

JOB C C.sub
PARENT A CHILD Bl B2 B3

PARENT B1 B2 B3 CHILD C

 Node names and filenames are your choice.
 Node name and submit filename do not have to match.

/\

—~— _.Endless Workflow Possibilities

o ° / fastQSplit
, ‘ »\, . filterContams
o ° ° , , , , . sol2sanger
B 2 4 A 1 - fastq2bfq

GIOIC
\\ b / mapMerge

Wikimedia Commons

SWAN Inner South

e

OSG Virtual School 2021 https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator

— DAGs are also useful for non-

===

Open Science Grid seq uential WO rk

‘bag’ of HTC jobs

disjointed workflows

o1 (52| 83 R v

OSG Virtual School 2021

12

Basic DAG input file:
i JOB nodes, PARENT-CHILD edges

my .dag n
JOB A A.sub

JOB Bl Bl.sub

JOB B2 B2.sub A{//,;;§7<l
JOB B3 B3.sub

JOB C C.sub

PARENT A CHILD Bl B2 B3 m E E
PARENT Bl B2 B3 CHILD C \\\\\:::hul

OSG Virtual School 2021 13

pen Science Grid

SUBMITTING AND
MONITORING A DAGMAN
WORKFLOW

14

—..oubmitting a DAG to the queue

e Submission command:

condor submit dag dag file

$ condor_submit dag my.dag

File for submitting this DAG to HTCondor
Log of DAGMan debugging messages

Log of HTCondor library output

Log of HTCondor library error messages
Log of the life of condor_ dagman itself

Submitting job(s).
1 job(s) submitted to cluster 128.

.condor.sub
.dagman.out
.lib.out
.lib.err

.dagman.log

15

A submitted DAG creates a
DAGMan job in the queue

« DAGMan runs on the access point, as a job in the
queue

o At first:

$ condor_gq

—- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:96187?2...

OWNER BATCH NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS
alice my .dag+128 4/30 18:08 _ _ _ 0.0

1 jobs; 0 completed, 0 removed, 0 idle, 1 running, 0 held, 0 suspended

$ condor_q -nobatch
—- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:96187?2...
ID OWNER SUBMITTED RUN TIME ST PRI SIZE CMD
128.0 alice 4/30 18:08 0+00:00:06 R O 0.3 condor_dagman
1 jobs; 0 completed, 0 removed, 0 idle, 1 running, 0 held, 0 suspended

16

Jobs are automatically submitted by
the DAGMan job

e Seconds later, node A is submitted:

$ condor_gq

—-- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?...

OWNER BATCH NAME SUBMITTED DONE RUN IDLE TOTAL JOB IDS

alice my.dag+128 4/30 18:08 _ _ 1 5 129.0

2 jobs; 0 completed, 0 removed, 1 idle, 1 running, 0 held, 0 suspended

$ condor_q -nobatch
—- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?2...
ID OWNER SUBMITTED RUN TIME ST PRI SIZE CMD
128.0 alice 4/30 18:08 0+00:00:36 R O 0.3 condor dagman
129.0 alice 4/30 18:08 0+00:00:00 I O 0.3 A_split.sh
2 jobs; 0 completed, 0 removed, 1 idle, 1 running, 0 held, 0 suspended

17

Jobs are automatically submitted by
the DAGMan job

o After A completes, B1-3 are submitted

$ condor_qg

—- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?2...

OWNER BATCH_ NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS

alice my.dag+128 4/30 18:08 1 _ 3 5 130.0...132.0
4 jobs; 0 completed, 0 removed, 3 idle, 1 running, 0 held, 0 suspended

$ condor_gq -nobatch
—- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?2...
ID OWNER SUBMITTED RUN TIME ST PRI SIZE CMD
128. alice 4/30 18:08 0+00:20:36 R O 0.3 condor dagman
130. alice 4/30 18:18 0+00:00:00 I O 0.3 B _run.sh
131. alice 4/30 18:18 0+00:00:00 I O 0.3 B _run.sh
132.0 alice 4/30 18:18 0+00:00:00 I O 0.3 B _run.sh
4 jobs; 0 completed, 0 removed, 3 idle, 1 running, 0 held, 0 suspended

Jobs are automatically submitted by
the DAGMan job

o After B1-3 complete, node C is submitted

$ condor_qg

—- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?2...

OWNER BATCH_ NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS

alice my.dag+128 4/30 18:08 4 _ 1 5 133.0

2 jobs; 0 completed, 0 removed, 1 idle, 1 running, 0 held, 0 suspended

$ condor_gq -nobatch
—- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?2...
ID OWNER SUBMITTED RUN TIME ST PRI SIZE CMD
128.0 alice 4/30 18:08 0+00:46:36 R O 0.3 condor dagman
133.0 alice 4/30 18:54 0+00:00:00 I O 0.3 C_combine.sh
2 jobs; 0 completed, 0 removed, 1 idle, 1 running, 0 held, 0 suspended

19

Status files are created at the time of

= —

B = =

DAG submission
(dag dir)/
A.sub Bl.sub B2.sub
B3.sub C.sub (other job files)
my .dag my .dag.condor.sub my.dag.dagman.log
my .dag.dagman.out my.dag.lib.err my .dag.lib.out
my.dag.nodes.log

* ,condor.sub and * .dagman. log describe the queued DAGMan
job process, as for any other jobs

* .dagman.out has DAGMan-specific logging (look to first for errors)

*,1lib.err/out contain std err/out for the DAGMan job process

* .nodes.log is a combined log of all jobs within the DAG

20

e DAG Completion

(dag dir)/

A.sub Bl.sub B2.sub

B3.sub C.sub (other job files)
my .dag my.dag.condor.sub my.dag.dagman.log
my .dag.dagman.out my.dag.lib.err my.dag.lib.out
my.dag.nodes.log my.dag.dagman.metrics

* .dagman.metrics is a summary of events and outcomes
* .dagman. log will note the completion of the DAGMan job
* .dagman.out has detailed logging (look to first for errors)

pen Science Grid

STOPPING, RESTARTING, AND
TROUBLESHOOTING

22

Removing a DAG from the queue

Remove the DAGMan job in order to stop and remove the entire
DAG:

condor_ rm dagman jobID

Creates a rescue file so that only incomplete or unsuccessful
NODES are repeated upon resubmission

$ condor g
—— Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?2...
OWNER BATCH_ NAME SUBMITTED DONE RUN IDLE TOTAL JOB IDS

alice my.dag+128 4/30 8:08 4 _ 1 6 129.0...133.0
2 jobs; 0 completed, 0 removed, 1 idle, 1 running, 0 held, 0 suspended

$ condor_rm 128
All jobs in cluster 128 have been marked for removal

23

—— Removal of a DAG creates a rescue file

Open Science Grid

(dag dir)/

A.sub Bl.sub B2.sub B3.sub C.sub (other job files)
my .dag my.dag.condor.sub my.dag.dagman.log
my.dag.dagman.out my.dag.lib.err my.dag.lib.out
my.dag.metrics my.dag.nodes.log my .dag.rescue(001

* Named dag file.rescue001
= increments if more rescue DAG files are created

« Records which NODES have completed successfully
= does not contain the actual DAG structure

24

Rescue Files
For Resuming a Failed DAG

e A rescue file is created when:

— a node fails, and after DAGMan advances through
any other possible nodes

— the DAG is removed from the queue
(or aborted, see manual)

— the DAG is halted and not unhalted
(see manual)

 Resubmission uses the rescue file (if it exists)
when the original DAG file is resubmitted

— override: condor_submit dag dag file -f

25

Node Failures
Result in DAG Failure

e If a node JOB fails (non-
zero exit code)

— DAGMan continues to run
other JOB nodes until it can
no longer make progress

o Example at right:
— B2 fails

— Other B* jobs continue

— DAG fails and exits after B*
and before node C

OSG Virtual School 2021

26

= <

e Best Control Achieved with One
cpenzae o Process per JOB Node

* While submit files can ‘queue’
many processes, a single

process per submit file is
usually best for DAG JOBs

— Failure of any queued process in
a JOB node results in failure of
the entire node and immediate
removal of all other processes in
the node.

— RETRY of a JOB node retries

the entire submit file.

OSG Virtual School 2021

27

Resolving held node jobs

nce Grid

$ condor_q -nobatch

-— Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:96182...

ID OWNER SUBMITTED RUN TIME ST PRI SIZE CMD

128.0 alice 4/30 18:08 0+00:20:36 R O 0.3 condor dagman

4 jobs; 0 completed, 0 removed, 0 idle, 1 running, , 0 suspended

e Look at the hold reason (in the job log, or with
‘condor g -hold’)

e Fix the issue and release the jobs (condor release)
-OR- remove the entire DAG, resolve, then resubmit
the DAG (remember the automatic rescue DAG file!)

HTCondor Manual: DAGMan > DAG Submission 28

https://htcondor.readthedocs.io/en/stable/users-manual/dagman-applications.html

pen Science Grid

BEYOND THE BASIC DAG:
NODE-LEVEL MODIFIERS

29

—
~——

Open Science Grid

my .dag
JOB A A.sub

JOB Bl Bl.sub
JOB B2 B2.sub

JOB B3 B3.sub

JOB C C.sub
PARENT A CHILD Bl B2 B3

PARENT B1 B2 B3 CHILD C

~— .. Default File Organization

(dag dir)/
A.sub Bl.sub
B2.sub B3.sub
C.sub my.dag

(other job files)

 What if you want to organize files

into other directories?

30

E Node-specific File Organization with

- —_
—
T

Open Science Grid DIR

 DIR sets the submission directory of the node

my .dag (dag dir)/

JOB A A.sub DIR A my .dag

JOB Bl Bl.sub DIR B A/ A.sub (A job files)
JOB B2 B2.sub DIR B B/ Bl.sub B2.sub

JOB B3 B3.sub DIR B B3.sub (B job files)

JOB C C.sub DIR C C/ C.sub (C job files)

PARENT A CHILD Bl B2 B3
PARENT B1 B2 B3 CHILD C

= PRE and POST scripts run on the

= —

\/

access point, as part of the node
my .dag n
JOB A A.sub)
SCRIPT POST A sort.sh POST script

JOB Bl Bl.sub
JOB B2 B2.sub

JOB C C.sub

SCRIPT PRE C tar it.sh
PARENT A CHILD Bl B2 B3 \\\\::}\l z////
PARENT Bl B2 B3 CHILD C

PRE script

 Use sparingly for lightweight work;
otherwise include work in node jobs

OSG Virtual School 2021

32

== RETRY failed nodes to overcome
S

Open Science Grid tra ns ie nt errors

 Retry a node up to N times if the exit code is non-zero:
RETRY node name N

JOB A A.sub
Example:| RETRY A 5

JOB B B.sub
PARENT A CHILD B

 Note: Unnecessary for nodes (jobs) that can use max retries
in the submit file

e See also: retry except for a particular exit code (UNLESS-
EXIT), or retry scripts (DEFER)

33

——

= —

== RETRY applies to whole node,
including PRE/POST scripts

e PRE and POST scripts are included in retries

e RETRY of a node with a POST script uses the exit code from
the POST script (not from the job)

— POST script can do more to determine node success, perhaps by
examining JOB output

Example: | SCRIPT PRE A download.sh

JOB A A.sub
SCRIPT POST A checkA.sh

RETRY A 5

34

pen Science Grid

MODULAR ORGANIZATION OF
DAG COMPONENTS

35

——

= —

s SUbmit File Templates via VARS

 VARS line defines node-specific values that are passed into

submit file variables

VARS node name varl="value"” |[var2="value"]
e Allows a single submit file shared by all B jobs, rather than one

submit file for each JOB.
my .dag

JOB Bl B.sub
VARS Bl data="Bl” opt=“10"
JOB B2 B.sub
VARS B2 data="“B2"” opt=“12"
JOB B3 B.sub
VARS B3 data=“B3"” opt="14"

B.sub

InitialDir = $(data)
arguments = $(data).csv $(opt)

queue

36

== SPLICE subsets of a DAG to simplify
lengthy DAG files

my .dag

JOB A A.sub
SPLICE B B.spl
JOB C C.sub

PARENT A CHILD B
PARENT B CHILD C

B.spl

JOB Bl Bl.sub
JOB B2 B2.sub

JOB BN BN.sub

OSG Virtual School 2021

= .. Repeating DAG Components!!

UBER IHOPE DAX

OSG Virtual School 2021 https://confluence.pegasus.isi.edu/display/pegasus/LIGO+IHOPE

38

— What if some DAG components can’t be
=== .y gm
known at submit time?

l If N can only
EE m be determined
as part of the

l work of A ...

39

OSG Virtual School 2021

e —

= A SUBDAG within a DAG

Open Science Grid

my .dag

JOB A A.sub

SUBDAG EXTERNAL B B.dag
JOB C C.sub

PARENT A CHILD B
PARENT B CHILD C

B.dag (written by A)

JOB Bl Bl.sub
JOB B2 B2.sub

JOB BN BN.sub

OSG Virtual School 2021

40

= >

= Use a SUBDAG to achieve a Cyclic

Open Sconce Component within a DAG

o« POST script determines whether another
iteration is necessary; if so, exits non-zero

« RETRY applies to entire SUBDAG, which may
include multiple, sequential nodes

my .dag

JOB A A.sub

SUBDAG EXTERNAL B B.dag
SCRIPT POST B iterateB.sh
RETRY B 1000

JOB C C.sub

PARENT A CHILD B

PARENT B CHILD C

l

POST script
RETRY

41

pen Science Grid

More in the HTCondor Manual and
the HTCondor Week DAGMan
Tutoriallll

https://htcondor.readthedocs.io/en/stable/users-manual/dagman-applications.html
https://agenda.hep.wisc.edu/event/1325/timetable/

e —
- S~

Open Science Grid

YOUR TURN!

OSG Virtual School 2021

43

e~

o DAGMan Exercises!

Open Scien

e Essential: Exercises 1-4
* Ask questions! ‘See you in Slack!

44

