
HTC Job Execution with
HTCondor

Tuesday, Aug 3
Lauren Michael

This work was supported by NSF grants MPS-1148698, OAC-1836650, and OAC-2030508

OSG Virtual School 2021

Overview

• How does the HTCondor job scheduler work?
• How do you run, monitor, and review jobs?
• Best ways to submit multiple jobs (what we’re here

for, right?)
• Testing, tuning, and troubleshooting to scale up.

2

OSG Virtual School 2021

HTCondor History and Status
• History

- Started in 1988 as a “cycle scavenger”

• Today
- Developed within the CHTC by professional developers
- Used all over the world, by:

§ campuses, national labs, Einstein/Folding@Home
§ Dreamworks, Boeing, SpaceX, investment firms, …
§ The OSG!!

• Miron Livny
- Professor, UW-Madison Computer Sciences
- CHTC Director, OSG Technical Director

3

OSG Virtual School 2021

HTCondor -- How It Works
• Submit tasks to a queue (on a access point)
• HTCondor schedules them to run on

computers (execute points)

access point
execute

point

execute
point

execute
point

4

OSG Virtual School 2021

Terminology: Job
• Job: An independently-scheduled unit of computing

work
• Three main pieces:

Executable: the script or program to run
Input: any options (arguments) and/or file-based information
Output: files printed by the executable

• In order to run many jobs, executable must run on the
command-line without any graphical input from the user

5

OSG Virtual School 2021

Terminology: Machine, Slot
• Machine

- A whole computer (desktop or server)
- Has multiple processors (CPU cores), some amount of memory,

and some amount of file space (disk)

• Slot
- an assignable unit of a machine (i.e. 1 job per slot)
- may correspond to one core with some memory and disk
- a typical machine will have multiple slots

• HTCondor can break up and create new slots, dynamically, as
resources become available from completed jobs

6

OSG Virtual School 2021

Job Matching
• On a regular basis, the central manager reviews
Job and Machine attributes and matches jobs to Slots.

access point
execute

point

execute
point

execute
point

central manager

7

OSG Virtual School 2021

Job Execution
• Then the access and execute points

communicate directly.

access point

execute
point

execute
point

execute
point

central manager

8

OSG Virtual School 2021

Single Computer

queue +
central manager

slot

slot

slot

9

OSG Virtual School 2021

BASIC JOB SUBMISSION

10

OSG Virtual School 2021

Job Example
• program called “compare_states” (executable), which

compares two data files (input) and produces a single
output file.

11

wi.dat

compare_
states

us.dat

wi.dat.out

$ compare_states wi.dat us.dat wi.dat.out

OSG Virtual School 2021

executable = compare_states
arguments = wi.dat us.dat wi.dat.out

transfer_input_files = us.dat, wi.dat

log = job.log
output = job.out
error = job.err

request_cpus = 1
request_disk = 20MB
request_memory = 20MB

queue 1

Basic Submit File

12

OSG Virtual School 2021

executable = compare_states
arguments = wi.dat us.dat wi.dat.out

transfer_input_files = us.dat, wi.dat

log = job.log
output = job.out
error = job.err

request_cpus = 1
request_disk = 20MB
request_memory = 20MB

queue 1

Basic Submit File
• List your executable

and any arguments it
takes

• Arguments are any
options passed to the
executable from the
command line

$ compare_states wi.dat us.dat wi.dat.out
13

OSG Virtual School 2021

executable = compare_states
arguments = wi.dat us.dat wi.dat.out

transfer_input_files = us.dat, wi.dat

log = job.log
output = job.out
error = job.err

request_cpus = 1
request_disk = 20MB
request_memory = 20MB

queue 1

Basic Submit File
• comma-separated list of

input files to transfer
to the slot

wi.dat

us.dat

14

OSG Virtual School 2021

Basic Submit File
• HTCondor will transfer

back all new and
changed files (output)
from the job,
automatically.

executable = compare_states
arguments = wi.dat us.dat wi.dat.out

transfer_input_files = us.dat, wi.dat

log = job.log
output = job.out
error = job.err

request_cpus = 1
request_disk = 20MB
request_memory = 20MB

queue 1

wi.dat.out

15

OSG Virtual School 2021

Basic Submit File
• log: file created by

HTCondor to track job
progress
- Explored in exercises!

• output/error:
captures stdout and stderr
from your program (what
would otherwise be printed
to the terminal)

executable = compare_states
arguments = wi.dat us.dat wi.dat.out

transfer_input_files = us.dat, wi.dat

log = job.log
output = job.out
error = job.err

request_cpus = 1
request_disk = 20MB
request_memory = 20MB

queue 1

16

OSG Virtual School 2021

Basic Submit File
• request the resources

your job needs.
- More on this later!

• queue: final keyword
indicating “create 1 job”
according to the above

executable = compare_states
arguments = wi.dat us.dat wi.dat.out

transfer_input_files = us.dat, wi.dat

log = job.log
output = job.out
error = job.err

request_cpus = 1
request_disk = 20MB
request_memory = 20MB

queue 1

17

OSG Virtual School 2021

SUBMITTING AND
MONITORING

18

OSG Virtual School 2021

Submitting and Monitoring
• To submit a job/jobs: condor_submit submit_file

• To monitor submitted jobs: condor_q

$ condor_submit job.submit
Submitting job(s).
1 job(s) submitted to cluster 128.

$ condor_q
-- Schedd: learn.chtc.wisc.edu : <128.104.101.92> @ 05/01/17 10:35:54
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS
alice CMD: compare_states 5/9 11:05 _ _ 1 1 128.0

1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended

HTCondor Manual: condor_submit
HTCondor Manual: condor_q 19

http://research.cs.wisc.edu/htcondor/manual/v8.5/condor_submit.html
http://research.cs.wisc.edu/htcondor/manual/v8.5/condor_q.html

OSG Virtual School 2021

More about condor_q
• By default, condor_q shows your jobs only and batches

jobs that were submitted together:

• Limit condor_q by username, ClusterId or full
JobId, (denoted [U/C/J] in following slides).

$ condor_q
-- Schedd: learn.chtc.wisc.edu : <128.104.101.92> @ 05/01/17 10:35:54
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS
alice CMD: compare_states 5/9 11:05 _ _ 1 1 128.0

1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended

JobId = ClusterID.ProcID

20

OSG Virtual School 2021

More about condor_q
• To see individual job details, use:
condor_q –nobatch

• We will use the -nobatch option in the following slides
to see extra detail about what is happening with a job

$ condor_q -nobatch
-- Schedd: learn.chtc.wisc.edu : <128.104.101.92>
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
128.0 alice 5/9 11:09 0+00:00:00 I 0 0.0 compare_states
128.1 alice 5/9 11:09 0+00:00:00 I 0 0.0 compare_states
...

1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended

21

OSG Virtual School 2021

Job Idle

(submit_dir)/
job.submit
compare_states
wi.dat
us.dat
job.log
job.out
job.err

$ condor_q -nobatch
-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92>
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

128.0 alice 5/9 11:09 0+00:00:00 I 0 0.0 compare_states wi.dat us.dat

1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended

22

Access Point

OSG Virtual School 2021

Job Starts

compare_states
wi.dat
us.dat

$ condor_q -nobatch
-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618>
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

128.0 alice 5/9 11:09 0+00:00:00 < 0 0.0 compare_states wi.dat us.dat

1 jobs; 0 completed, 0 removed, 0 idle, 1 running, 0 held, 0 suspended

(execute_dir)/

23

(submit_dir)/
job.submit
compare_states
wi.dat
us.dat
job.log
job.out
job.err

(execute_dir)/

Access Point Execute Point

OSG Virtual School 2021

Job Running
$ condor_q -nobatch
-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92>
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

128.0 alice 5/9 11:09 0+00:01:08 R 0 0.0 compare_states wi.dat us.dat

1 jobs; 0 completed, 0 removed, 0 idle, 1 running, 0 held, 0 suspended

24

(submit_dir)/
job.submit
compare_states
wi.dat
us.dat
job.log
job.out
job.err

(execute_dir)/
compare_states
wi.dat
us.dat
stderr
stdout
wi.dat.out
subdir/tmp.dat

Access Point Execute Point

OSG Virtual School 2021

Job Completes

stderr
stdout

wi.dat.out

$ condor_q -nobatch
-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92>
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

128 alice 5/9 11:09 0+00:02:02 > 0 0.0 compare_states wi.dat us.dat

1 jobs; 0 completed, 0 removed, 0 idle, 1 running, 0 held, 0 suspended

25

(execute_dir)/
compare_states
wi.dat
us.dat
stderr
stdout
wi.dat.out
subdir/tmp.dat

Access Point Execute Point
(submit_dir)/

job.submit
compare_states
wi.dat
us.dat
job.log
job.out
job.err

OSG Virtual School 2021

Job Completes (cont.)
$ condor_q -nobatch

-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

0 jobs; 0 completed, 0 removed, 0 idle, 0 running, 0 held, 0 suspended

26

(submit_dir)/
job.submit
compare_states
wi.dat
us.dat
job.log
job.out
job.err
wi.dat.out

Access Point

OSG Virtual School 2021

Log File
000 (128.000.000) 05/09 11:09:08 Job submitted from host: <128.104.101.92&sock=6423_b881_3>
...
001 (128.000.000) 05/09 11:10:46 Job executing on host: <128.104.101.128:9618&sock=5053_3126_3>
...
006 (128.000.000) 05/09 11:10:54 Image size of job updated: 220

1 - MemoryUsage of job (MB)
220 - ResidentSetSize of job (KB)

...
005 (128.000.000) 05/09 11:12:48 Job terminated.

(1) Normal termination (return value 0)
Usr 0 00:00:00, Sys 0 00:00:00 - Run Remote Usage
Usr 0 00:00:00, Sys 0 00:00:00 - Run Local Usage
Usr 0 00:00:00, Sys 0 00:00:00 - Total Remote Usage
Usr 0 00:00:00, Sys 0 00:00:00 - Total Local Usage

0 - Run Bytes Sent By Job
33 - Run Bytes Received By Job
0 - Total Bytes Sent By Job
33 - Total Bytes Received By Job
Partitionable Resources : Usage Request Allocated

Cpus : 1 1
Disk (KB) : 14 20480 17203728
Memory (MB) : 1 20 20

27

OSG Virtual School 2021

whole
computer

your request

Resource Requests
• Jobs are nearly always using a portion of a

machine, and not the whole thing
• Very important to request appropriate resources

(memory, cpus, disk)
- requesting too little: causes problems for your and

other jobs; jobs might by ‘held’ by HTCondor
- requesting too much: jobs will match to fewer “slots”

than they could, and you’ll block other jobs

28

OSG Virtual School 2021

Is it OSG-able?

29

OSG Virtual School 2021

SUBMITTING MULTIPLE JOBS

30

OSG Virtual School 2021

From one job …

• Goal: create 3 jobs that each analyze a
different input file.

executable = analyze.exe
arguments = file.in file.out
transfer_input_files = file.in

log = job.log
output = job.out
error = job.err

queue

job.submit

analyze.exe
file0.in
file1.in
file2.in

job.submit

(submit_dir)/

31

OSG Virtual School 2021

One submit file per job
(not recommended!)

32

executable = analyze.exe

arguments = file0.in file0.out
transfer_input_files = file0.in
output = job0.out
error = job0.err
queue

job0.submit

analyze.exe
file0.in
file1.in
file2.in
(etc.)

job0.submit
job1.submit
job2.submit
(etc.)

(submit_dir)/

executable = analyze.exe

arguments = file1.in file1.out
transfer_input_files = file1.in
output = job1.out
error = job1.err
queue

job1.submit

(etc…)

OSG Virtual School 2021

Automatic Variables
Each job’s ClusterId and
ProcId numbers are
autogenerated and saved as
job attributes.

You can reference them
inside the submit file
using:*

- $(Cluster)
- $(Process)

queue N

128

128

128

0

1

2

ClusterId ProcId

...
128 N-1

...

* $(ClusterId) and $(ProcId) also work 33

OSG Virtual School 2021

Using $(Process) for Numbered Files

executable = analyze.exe
arguments = file$(Process).in file$(Process).out
transfer_input_files = file$(Process).in

log = job_$(Cluster).log
output = job_$(Process).out
error = job_$(Process).err

queue 3

job.submit

analyze.exe
file0.in
file1.in
file2.in

job.submit

(submit_dir)/

• $(Process) and $(Cluster) allow us to provide unique
values to each job and/or submission!

34

OSG Virtual School 2021

Organizing Files in Sub-Directories

• Create sub-directories and use paths in
the submit file to separate various input,
error, log, and output files.

input

output
error

log

35

OSG Virtual School 2021

Use a Directory per File Type

executable = analyze.exe
arguments = file$(Process).in file$(Process).out
transfer_input_files = input/file$(Process).in

log = log/job$(Process).log
error = err/job$(Process).err

queue 3

job.submit
analyze.exe

input/
file0.in
file1.in
file2.in

log/
job0.log
job1.log
job2.log

err/
job0.err
job1.err
job2.err

file0.out
file1.out
file2.out

job.submit

(submit_dir)/

36*directories must be created before jobs are submitted

OSG Virtual School 2021

Data Transfer

(execute_dir)/
analyze.exe
file0.in

37

(submit_dir)/
job.submit
analyze.exe
input/ file0.in

file1.in
file2.in

log/
err/

Access Point Execute Point

analyze.exe
file0.in

File always get transferred into the top level of the execute directory,
regardless of how they are organized on the access point.

OSG Virtual School 2021

Separating jobs with InitialDir

executable = analyze.exe
initialdir = job$(Process)
arguments = file.in file.out
transfer_input_files = file.in

log = job.log
error = job.err

queue 3

job.submit
analyze.exe

job0/
file.in
job.log
job.err
file.out

job1/
file.in
job.log
job.err
file.out

job2/
file.in
job.log
job.err
file.out

job.submit

(submit_dir)/

executable must be relative
to the submission directory,

and *not* in the InitialDir.

38*directories must be created before jobs are submitted

OSG Virtual School 2021

What about non-numbered jobs?

executable = compare_states
arguments = wi.dat us.dat wi.dat.out
…

executable = compare_states
arguments = mo.dat us.dat mo.dat.out
…

executable = compare_states
arguments = ca.dat us.dat ca.dat.out
…

executable = compare_states
arguments = md.dat us.dat md.dat.out
…

executable = compare_states
arguments = wv.dat us.dat wv.dat.out
…

executable = compare_states
arguments = fl.dat us.dat fl.dat.out
…

executable = compare_states
arguments = wa.dat us.dat wa.dat.out
…

executable = compare_states
arguments = mi.dat us.dat mi.dat.out
…

executable = compare_states
arguments = co.dat us.dat co.dat.out
…

executable = compare_states
arguments = nv.dat us.dat nv.dat.out
…

executable = compare_states
arguments = sd.dat us.dat sd.dat.out
…

executable = compare_states
arguments = mn.dat us.dat mn.dat.out
…

executable = compare_states
arguments = vt.dat us.dat vt.dat.out

executable = compare_states
arguments = tx.dat us.dat tx.dat.out

executable = compare_states
arguments = al.dat us.dat al.dat.out
…

executable = compare_states
arguments = ut.dat us.dat ut.dat.out
…

executable = compare_states
arguments = ak.dat us.dat ak.dat.out

executable = compare_states
arguments = tn.dat us.dat tn.dat.out
…

• Back to our compare_states example…
• What if we had data for each state? We could do 50

submit files (or 50 “queue 1” statements) ...

OSG Virtual School 2021

multiple submit
files
(multiple queue
statements)
var matching
pattern

var in (i ii iii …)

var1,var2 from
csv_file

Submitting Multiple Jobs – Queue Statements

queue state matching *.dat

queue state in (wi.dat ca.dat co.dat)

queue state from state_list.txt wi.dat
ca.dat
mo.dat
...

state_list.txt:

40

Not Recommended

queue directory matching job*

OSG Virtual School 2021

Multiple Job Use Cases – Queue Statements

multiple submit
files

Not recommended. Though, may be useful for separating job
batches, conceptually, for yourself.

var matching
pattern

Minimal preparation, can use “files” or “dirs” keywords to narrow
possible matches.
Requires good naming conventions, less reproducible.

var in (i,ii,iii,…) All information contained in the submit file: reproducible.
Harder to automate submit file creation.

var1,var2 from
csv_file

Supports multiple variables, highly modular (easy to use one
submit file for many job batches that have different var lists),
reproducible.
Additional ‘list’ file needed, but can be automated.

41

OSG Virtual School 2021

Using Multiple Variables
• Both the “from” and “in” syntax support

multiple variables from a list.

executable = compare_states
arguments = -y $(year) -i $(infile)

transfer_input_files = $(infile)

queue infile,year from job_list.txt

wi.dat, 2010
wi.dat, 2015
ca.dat, 2010
ca.dat, 2015
mo.dat, 2010
mo.dat, 2015

job.submit job_list.txt

42

OSG Virtual School 2021

TESTING AND
TROUBLESHOOTING

43

OSG Virtual School 2021

What Can Go Wrong?
• Jobs can go wrong “internally”:

- the executable experiences an error
• Jobs can go wrong logistically, from HTCondor’s

perspective:
- a job can’t be matched
- files not found for transfer
- job used too much memory
- badly-formatted executable
- and more...

44

OSG Virtual School 2021

Reviewing Failed Jobs
• Job log, output and error files can provide valuable

troubleshooting details:

Log Output Error

• when jobs were
submitted, started,
held, or stopped

• where job ran
• resources used
• interruption

reasons
• exit status

• stdout (or other
output files) may
contain errors from
the executable

• stderr captures
errors from the
operating system,
or reported by the
executable, itself.

45

OSG Virtual School 2021

Job Holds
• HTCondor will hold your job if there’s a logistical

issue that YOU (or maybe an admin) need to fix.
- files not found for transfer, over memory, etc.

• A job that goes on hold is interrupted (all progress is
lost), but remains in the queue in the “H” state until
removed, or (fixed and) released.

46

OSG Virtual School 2021

Diagnosing Holds
• If HTCondor puts a job on hold, it provides a hold reason, which can

be viewed in the log file, with condor_q –hold <Job.ID>, or with:

$ condor_q -hold -af HoldReason
Error from slot1_1@wid-003.chtc.wisc.edu: Job has gone over
memory limit of 2048 megabytes.

Error from slot1_20@e098.chtc.wisc.edu: SHADOW at
128.104.101.92 failed to send file(s) to <128.104.101.98:35110>: error
reading from /home/alice/script.py: (errno 2) No such file or directory;
STARTER failed to receive file(s) from <128.104.101.92:9618>

Error from slot1_11@e138.chtc.wisc.edu: STARTER
at 128.104.101.138 failed to send file(s) to <128.104.101.92:9618>;

SHADOW at
128.104.101.92 failed to write to file /home/alice/Test_18925319_16.err:
(errno 122) Disk quota exceeded

47

OSG Virtual School 2021

Common Hold Reasons
• Incorrect path to files that need to be transferred
• Badly formatted executables

(e.g. Windows line endings on Linux)
• Job has used more memory or disk than requested.
• Job has run long than allowed.

(e.g. 72-hour default in CHTC Pool)
• Submit directory is over quota.
• The admin has put your job on hold.

48

OSG Virtual School 2021

Holding and Removing Jobs

• If you know your job has a problem, you can fix it!
• If the problem requires resubmission:

- Remove it from the queue:
condor_rm [U/C/J]

• If problem is within the executable or input file(s):
- Hold the job, fix things, and release:

condor_hold [U/C/J]
condor_release [U/C/J]

HTCondor Manual: condor_hold
HTCondor Manual: condor_rm 49

http://research.cs.wisc.edu/htcondor/manual/v8.5/condor_hold.html
http://research.cs.wisc.edu/htcondor/manual/v8.5/condor_rm.html

OSG Virtual School 2021

YOUR TURN!

50

CHTC Pool
single-core

multi-core

high-memory

GPUs MPI
submit
server

OSG Virtual School 2021

Thoughts on Exercises
• Copy-and-paste is quick, but you WILL learn more by

typing out commands and submit file contents
• Ask Questions during Work Time! (Slack)
• Exercises in THIS unit are important to complete in

order, before moving on! (You can save “bonus”
exercises for later.)

• (See 1.6 if you need to remove jobs!)

51

OSG Virtual School 2021

Reviewing Jobs
• To review a large group of jobs at once, use
condor_history

As condor_q is to the present, condor_history is to the past

$ condor_history alice
ID OWNER SUBMITTED RUN_TIME ST COMPLETED CMD

189.1012 alice 5/11 09:52 0+00:07:37 C 5/11 16:00 /home/alice
189.1002 alice 5/11 09:52 0+00:08:03 C 5/11 16:00 /home/alice
189.1081 alice 5/11 09:52 0+00:03:16 C 5/11 16:00 /home/alice
189.944 alice 5/11 09:52 0+00:11:15 C 5/11 16:00 /home/alice
189.659 alice 5/11 09:52 0+00:26:56 C 5/11 16:00 /home/alice
189.653 alice 5/11 09:52 0+00:27:07 C 5/11 16:00 /home/alice
189.1040 alice 5/11 09:52 0+00:05:15 C 5/11 15:59 /home/alice
189.1003 alice 5/11 09:52 0+00:07:38 C 5/11 15:59 /home/alice
189.962 alice 5/11 09:52 0+00:09:36 C 5/11 15:59 /home/alice
189.961 alice 5/11 09:52 0+00:09:43 C 5/11 15:59 /home/alice
189.898 alice 5/11 09:52 0+00:13:47 C 5/11 15:59 /home/alice

HTCondor Manual: condor_history

http://research.cs.wisc.edu/htcondor/manual/v8.5/condor_history.html

OSG Virtual School 2021

Shared Files
• HTCondor can transfer an entire directory

or all the contents of a directory
- transfer whole directory

- transfer contents only

• Useful for jobs with many shared files;
transfer a directory of files instead of
listing files individually

transfer_input_files = shared/

transfer_input_files = shared

job.submit
shared/

reference.db
parse.py
analyze.py
cleanup.py
links.config

(submit_dir)/

