
Containers and GPUs

Mats Rynge (rynge@isi.edu)
Christina Koch (ckoch5@wisc.edu)

mailto:rynge@isi.edu
mailto:ckoch5@wisc.edu

GPUS

2

What is a GPU?
• GPU = Graphical

Processing Unit
• Has hundreds to

thousands of
“cores” that can
be used to
parallelize work.

3

GPU Use Cases
• Programs that map well to GPUs

include:
− Deep learning
− Molecular dynamics
− Anything with lots of number crunching

(like matrix operations) and low(er) data
load.

4

GPUs on the OSG
• Scale: 100s (vs 10,000s of CPUs)
• Variety of available GPU cards

• Same restrictions as always: not sure
what you’ll get, jobs can be interrupted

• May take longer to start

5

Making robust GPU jobs
• Use a software strategy that can run on

different GPU types:
− Container
− Install inside the job

• OR use job requirements to request
certain kind of GPU (more limiting)

6

Submit File options
• Request GPUs with “request_gpus”
• Can use custom requirements

7

request_gpus = 1

requirements = (CUDACapability >= 6.0)

CONTAINERS

8

Returning to Our Analogy…
• Using a container is kind of like bringing

along a whole kitchen…

9
Photo by PunkToad on Flickr, CC-BY

https://www.flickr.com/photos/punktoad/
https://www.flickr.com/photos/83699771@N00/9123847716

Containers
• Containers are a tool for capturing an

entire job “environment” (software,
libraries, operating system) into an
“image” that can be used again.

10polaroid photos by Nick Bluth from the Noun Project

Container Motivations

Consistent environment (default images) - If a user does not specify a specific image, a default one is used by
the job. The image contains a decent base line of software, and because the same image is used across all the
sites, the user sees a more consistent environment than if the job landed in the environments provided by the
individual sites.

Custom software environment (user defined images) - Users can create and use their custom images, which is
useful when having very specific software requirements or software stacks which can be tricky to bring with a job.
For example: Python or R modules with dependencies, TensorFlow

Enables special environment such as GPUs - Special software environments to go hand in hand with the
special hardware.

Process isolation - Sandboxes the job environment so that a job can not peek at other jobs.

File isolation - Sandboxes the job file system, so that a job can not peek at other jobs’ data.

11

Container Types
• Two common container systems:
Docker Singularity
https://www.docker.com/ https://sylabs.io/

The container itself will always be some version of Linux - but can be
run on Linux / Mac / Windows if Docker or Singularity is installed

12

https://www.docker.com/
https://sylabs.io/

Focus on Docker
• Docker has well-established and well-

documented ways to build container
images. It has huge library of images!

• If you have a Docker image:
− Can run with Docker
− Can run with Singularity – Remember this
− Can convert to a Singularity image

13

Running Containers

14

docker run <container> <command>

docker run –it <container> /bin/sh$

Docker Hub

15

docker pull docker pull

docker push

Building Containers

1616

docker build .Dockerfile

Sample Dockerfile

17

Start with this image as a "base".
It's as if all the commands that created that image were inserted here.
FROM continuumio/miniconda:4.7.12

Use RUN to execute commands inside the image as it is being built up.
RUN conda install --yes numpy

Try to always "clean up" after yourself to reduce the final size of your image.
RUN apt-get update \
&& apt-get --yes install --no-install-recommends graphviz\
&& apt-get --yes clean \
&& rm -rf /var/lib/apt/lists/*

cvmfs-singularity-sync

18

Containers are defined using Docker
Public Docker Hub

… and executed with Singularity
No direct access to the Singularity command line - that is
controlled by the infrastructure

https://github.com/opensciencegrid/cvmfs-singularity-sync
(next slide)

https://github.com/opensciencegrid/cvmfs-singularity-sync

19

User-defined Container Publishing

HubAutomatic
builds on
changes

Automatic
sync on
changes

docker_images.txt
cvmfs-singularity-sync

Pull request or ticket to register container (one time)

/cvmfs

Option 1

Option 2

CVMFS Repositories
/cvmfs/

ams.cern.ch

atlas.cern.ch

cms.cern.ch

connect.opensciencegrid.org

gwosc.osgstorage.org

icecube.opensciencegrid.org

ligo-containers.opensciencegrid.org <- large project with their own containers

nexo.opensciencegrid.org

oasis.opensciencegrid.org <- “modules” software

singularity.opensciencegrid.org <- general containers (next few slide)

snoplus.egi.eu

spt.opensciencegrid.org

stash.osgstorage.org <- ~1PB of user published data

veritas.opensciencegrid.org

xenon.opensciencegrid.org

OSG stores container images on CVMFS in extracted form. That is, we
take the Docker image layers or the Singularity sif files and export them
onto CVMFS. For example, ls on one of the containers looks similar to ls /
on any Linux machine:

$ ls /cvmfs/singularity.opensciencegrid.org/opensciencegrid/osgvo-el7:latest/
cvmfs host-libs proc sys anaconda-post.log lib64
dev media root tmp bin sbin
etc mnt run usr image-build-info.txt singularity
home opt srv var lib

Result: Most container instances only use a small part of the container
image (50-150 MB) and that part is cached in CVMFS!

Extracted Images

21

	Containers and GPUs
	GPUs
	What is a GPU?
	GPU Use Cases
	GPUs on the OSG
	Making robust GPU jobs
	Submit File options
	Containers
	Returning to Our Analogy…
	Containers
	Container Motivations
	Container Types
	Focus on Docker
	Running Containers
	Docker Hub
	Building Containers
	Sample Dockerfile
	cvmfs-singularity-sync
	User-defined Container Publishing
	CVMFS Repositories
	Extracted Images

