

Intro to the Virtual School, HTC, and OSG

Monday, Aug 2 Tim Cartwright, Lauren Michael

This work was supported by NSF grants MPS-1148698, OAC-1836650, and OAC-2030508

Welcome to the OSG Virtual School 2021!

Why We Are Here

- You need large-scale, HTC-style computing or you support researchers who do
- Do not let computing block your research!
 - Computing is cheap and plentiful
 - Push the limits of what you can do
 - If you run out of science to do, transcend the boundaries of your science
 - When computing becomes a barrier, push us to fix the problems
- Help & encourage others: In your lab, in your department, in your field, friends, etc.

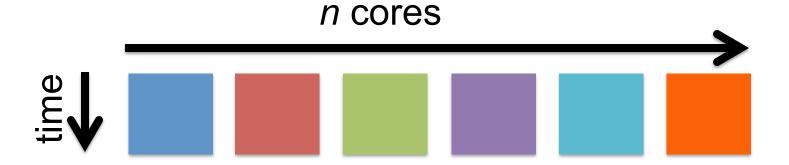
Intro to HTC and OSG

- What is *high throughput computing (HTC)*?
- What is the Open Science Grid (OSG)?
- How do you get the most out of the above?
 - School content organization

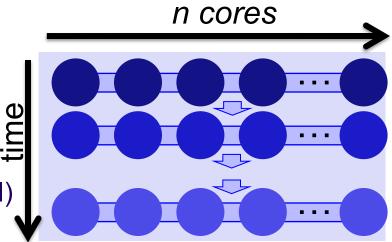
HTC: An Analogy

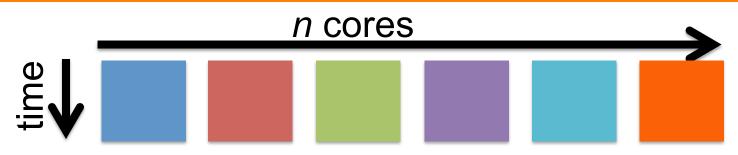
HTC: An Analogy

Serial Computing


What many programs look like:

- Serial execution, running one task at a time
- Overall compute time grows significantly as individual tasks get more complicated (long) or if the number of tasks increases
- How can you speed things up?


- Parallelize!
- Independent tasks run on different cores

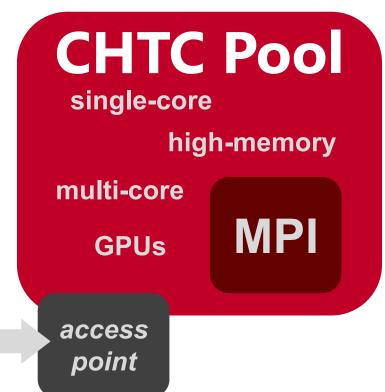


High Performance Computing (HPC)

- Benefits greatly from:
 - CPU speed + homogeneity
 - shared filesystems
 - fast, expensive networking (e.g.
 Infiniband) and co-located servers
- Requires special programming (MP/MPI)
- Scheduling: **Must wait until all processors are available**, at the same time and for the full duration
- What happens if one core or server fails or runs slower than the others?

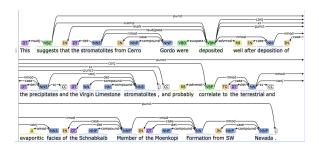
Open Science Grid High Throughput Computing (HTC)

- Scheduling: only need **1 CPU core for each** (shorter wait)
- Easier recovery from failure
- No special programming required
- Number of concurrently running jobs is *more* important
- CPU speed and homogeneity are *less* important

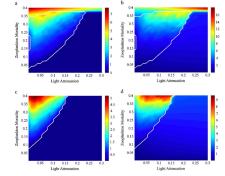

Example Local Cluster

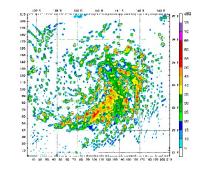
- UW-Madison's Center for High Throughput Computing (CHTC)
- Recent CPU hours:

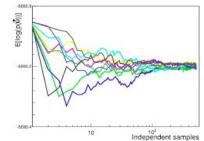
~120 million hrs/year (~15k cores)


Up to 15,000 per user, per day

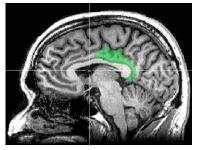
(~600 cores in use)




HTC Examples


text analysis (most genomics ...)

parameter sweeps

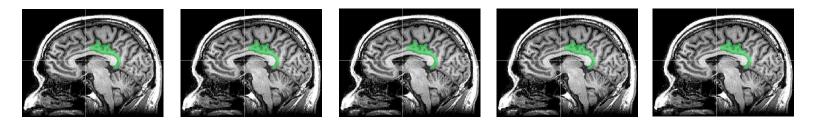


multi-start simulations

statistical model optimization (MCMC, numerical methods, etc.)

OSG Virtual School 2021

multi-image and multi-sample analysis



Signs of HTC-able work

- Any mention of **<u>numerous</u>** samples, images, models, parameters, etc.
- Nearly anything written by the primary user (e.g. c/fortran, Python, R)
 - Break out of loops!
 - Common internal parallelism could really be HTC (e.g. Matlab's 'parfor', 'distributed server', etc.)
- Some community softwares that use <u>multi-threading or</u> <u>multiprocessing</u> (e.g. OpenMP)
 - many are simply looping over data portions or independent tasks
 - HTC-able: break up input (or 'parameter' space), turn off multi-threading, combine results
- Long-running jobs (especially if non-MPI); see above explanations

Example Challenge

You need to process 72 brain images for each of 168 patients. **Each image** <u>takes ~1 hour of compute time</u>.

168 patients x 72 images = ~12000 tasks = ~12000 hrs

Conference is next week.

Distributed Computing

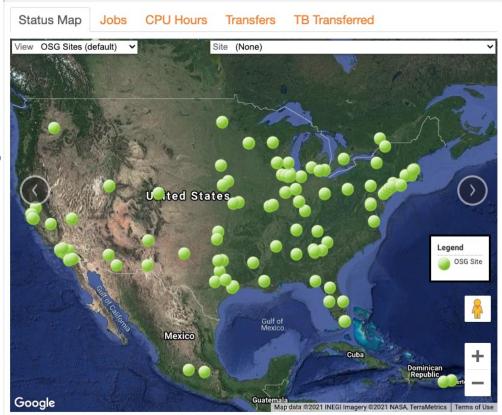
- Use many computers, each running one instance of our program
- Example:
 - 1 laptop (1 core) => 12,000 hrs = ~1.5 years
 - 1 server (~40 cores) => 750 hrs = ~2 weeks
 - 1 MPI job (400 cores) => 30 hrs = ~1 days
 - A whole cluster (10,000 cores) = ~1 hour

What computing resources are available?

- A server?
- A local cluster?
 - Consider: Queue wait time? Can you program MP/MPI? Typical clusters tuned for HPC (large MPI) jobs may not be best for HTC workflows! Could you use even more than that?
- OSG?
- Other
 - EGI (European Grid Infrastructure)
 - Other national and regional grids
 - Commercial cloud systems (e.g. HTCondor on AWS)

Status Map Jobs CPU Hours Transfers TB Transferred

What is the OSG?


a consortium of researchers and institutions who <u>share</u> compute and data resources for **distributed** high-throughput computing (<u>d</u>HTC) in support of open science

Who Participates?

- Researchers
- Science Gateways
- Multi-Institution Collaborations
 - Atlas/CMS (Higg Boson), IceCube, South Pole Telescope, and others
- Academic Institutions and National Laboratories that support the above

Campuses are critical to OSG's ability to advance research.

Total Core Hours per Month

200 Mil		total ~
Research Communities	— cms	4.9676 Bil
	— atlas	4.4322 Bil
(Pools) in the OSG	— osg	1.0743 Bil
	— dosar	316.0 Mil
("virtual organizations")	— fermilab	295.2 Mil
>2 billion hrs in the last year	— cdf	259.4 Mil
	- glow	255.7 Mil
100 Mil	— dzero	225.4 Mil
	— ligo	114.5 Mil
	- alice	113.3 Mil
50 Mil	— mu2e	94.4 Mil
	— gridunesp	80.1 Mil
	— nova	76.2 Mil
	— engage	64.5 Mil
	— minos	62.9 Mil
2006 2008 2010 2012 2014 2016 2018 2020	— hcc	57.8 Mil

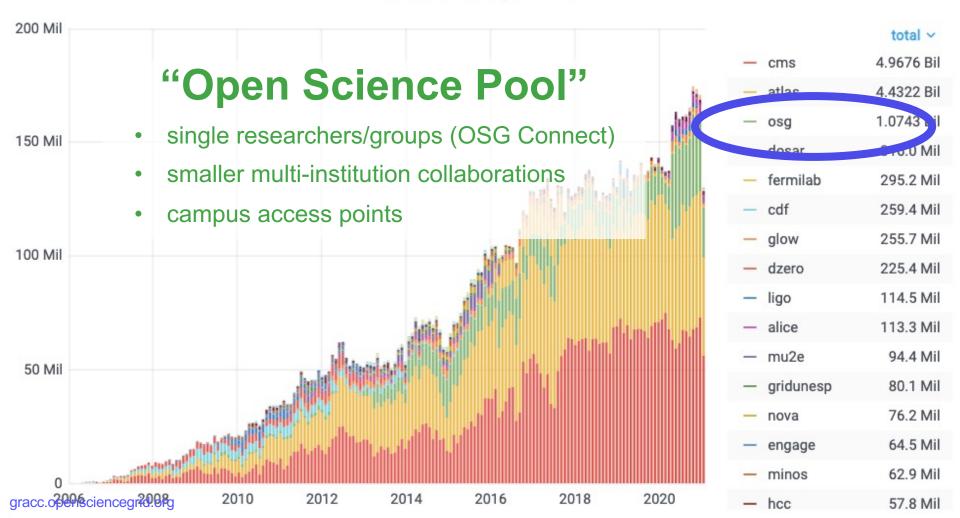
CERN Accelerating science

Sign in Directory

HOW IS CMS SEARCHING FOR THE HIGGS BOSON?

OSG Supports Multi-Messenger Astronomy.

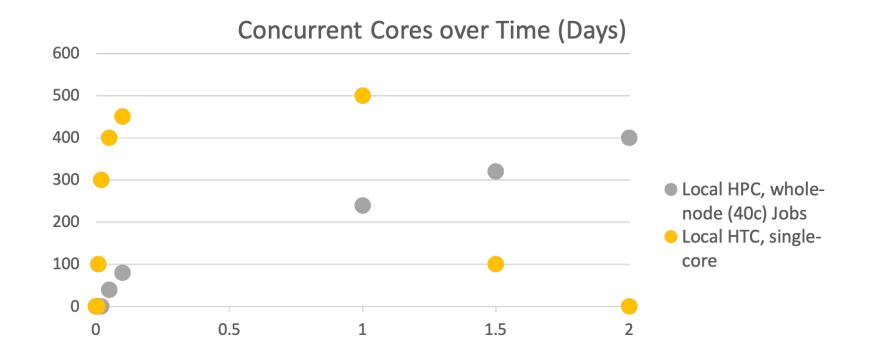
ection of colliding neutron stars by LIGO, VIRGO, and DECam.

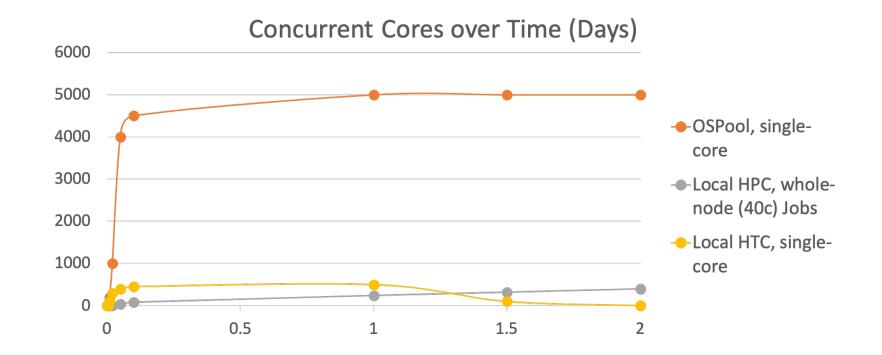

Read more

Next

OSG integrates global computing to support detection of

Total Core Hours per Month




Can the OSPool Help?

<i>Per-Job</i> Resources	Ideal Jobs! (up to 10,000 cores, per user!)	Still Very Advantageous!	Probably not
cores (GPUs)	1 (1; non-specific)	<8 (1; specific GPU type)	>8 (or MPI) (multiple)
Walltime (per job)	<10 hrs* *or checkpointable	<20 hrs* *or checkpointable	>20 hrs
RAM (per job)	<few gb<="" td=""><td><10 GB</td><td>>10 GB</td></few>	<10 GB	>10 GB
Input (per job)	<500 MB	<10 GB	>10 GB
Output (per job)	<1 GB	<10 GB	>10 GB
Software	'portable' (pre-compiled binaries, transferable, containerizable, etc.)	most other than $\rightarrow \rightarrow \rightarrow$	licensed software; non- Linux

OSG Virtual School Content

- Lectures: Tue-Fri, 10am CT & 2:30pm* CT
 - HTC via HTCondor
 - (d)HTC on the **OSG**
 - Software Portability for HTC
 - Data Portability for HTC
- Bonus topics (2nd Mon-Tue): optional
- **Showcase** (2nd Wed): science transformed by HTC
- Lightning Talks+Close (2nd Fri): chance to show work

*presented 'publicly', via registration; all others for selected participants

Proactive, personalized facilitation and support for:

- Individual researchers via OSG Connect
- Institutions and large collaborations
 - Share local resources via the OSG
 - Locally-supported access points
 - data and identity federation
 - integration of cloud capacity
 - Local HTC Capacity
 - Learn from OSG's Research Computing Facilitators
- **Presentations/Training** in OSG compute execution, HTC Facilitation, and local HTC systems administration

