Antimatter

Using High Throughput Computing to Study Very Rare Processes

Anirvan Shukla

Department of Physics, University of Hawaii at Manoa

OSG Virtual School 2021, August 11

What is antimatter?

- Matter is made of elementary particles like protons, electrons etc.
- Each elementary particle has a corresponding antiparticle.
- I study antimatter production in particle accelerators at the European Organization for Nuclear Research (CERN), which is the largest particle physics experiment in the world.
- I also model how antimatter is produced when cosmic rays interact with the interstellar medium.

What can antimatter tell us about dark matter?

 $p, \overline{p}, d, \overline{d},$

Cosmic rays p, He

> Interstellar medium

Image from S. Hornung, ICHEP 2020

3/11

Hypothetical dark

matter

 $p, \overline{p}, d, \overline{d},$ ³He, ³He,

Why can you not simulate this on your laptop?

Production of heavier antimatter is extremely rare!

- 1 antihelium particle is produced in every 10 billion 1 trillion events.
- 1 million events need ~1 CPU-hour.
- Total ~100 trillion events needed!
- About 100 million CPU- hours need (~12,000 years on a single CPU).

Data storage challenges

- 10 million events stored in 10 GB output file.
- With 100 trillion events, need ~100 million GB of storage.

User School 2016 to kickstart my project

- Access to my existing computing resources at CERN and the University of Hawaii's HPC cluster were not enough for this project.
- The User School made me familiar with the OSG's capabilities, and the software environment.
- Information about preinstalled software using "modules", path to different gcc/g++ compilers, etc. was very helpful.
- Hands-on experience of running simple example jobs during the User School helped in learning the basics of HTCondor.

A simple workflow

Start with a simple HTCondor

job, and iteratively build on it.

My final jobs consisted of the following:

- HTCondor submit file
 - Handle input files to transfer to compute node.
 - Launches bash wrapper script.

Bash wrapper script

- Load software modules.
- Move configuration files, custom software/libraries, temporary directories.
- Launch python script.
- Python wrapper script
 - Launches multiple C++ program in sequence
 - Transfers final histogram file to server in Hawaii
 - Performs clean up, and exits job.
- Two statically-compiled C++ executables.

These jobs were designed to run for 10 hours on the OSG.

Finding solutions to the storage constraints

How to handle the large (100 million GB of output files)?

- Breaking simulations into chunks of 10-hour jobs with 10 million simulated events.
 - \circ Output file of ~10 GB.
- Analyzing the final output file within the job.
 - Extracting all possible data of interest into hundreds of histograms.
 - Lose detailed information at the individual particle level a compromise.
 - Drastically reducing file size: 10 GB output file -> 100 MB histogram file.
- No local storage!
 - Transfer the 100 MB histogram file directly from the compute node to our server in Hawaii.
- But 10 million files of 100 MB each i.e. total ~1000 TB!
 - However, histograms are excellent for "adding" up.
 - Final size of simulation output: ~2 GB!
 - This approach was computationally expensive, but the final storage required was small.
 - Ideal for using multiple clusters.

New antimatter predictions using the OSG

- Almost 60 trillion proton-proton collisions were simulated to calculate this spectra.
- Using more than 6000 CPU-years on the OSG.
- These spectra could be calculated for the first time using a particle physics model.
- Published in <u>Phys. Rev. D 102, 063004 (2020)</u>.
- Already well received by the experimental community.

A new project, and solving new challenges with DAGMan

- To expand on my previous work, my earlier workflows needed more optimizations.
 - Shorter OSG jobs (~1 hour) run with a higher success rate, as opposed to 10-hour jobs.
 - Number of concurrent jobs is also much higher with short jobs.
 - But 10x file transfers was a bottleneck.
 - \circ My jobs were failing at a high rate of ~50%.
- Restructuring the old workflow using a very basic DAG.
 - OSG jobs are submitted by the DAGMan job.
 - On job completion, the output file is transferred to the OSF submit node via transfer_output_files and transfer_output_remaps.
 - A DAGMan POST script runs after each job, and takes care of file transfers from the submit node to Hawaii.
- DAGMan also does the babysitting I can list 100,000 jobs, and DAGMan throttles job submission in a way that adapts to the load on the OSG pool.

OSG usage statistics

- Typical resourced requested
 - CPU: 1
 - Memory: 1-2 GB
 - Disk space (10-15 GB).
- The compute nodes were widely distributed across the US. The table on the right shows the top 20 facilities for my jobs.
- Core hours used in last two years:
 - Total: 49 million core-hours (5600 core-years)
 - Total jobs: 8.3 million

Total core hours by facility

	SUITS	26 Mil
-	IRISHEP-SSL-UCHICAGO	6 Mil
	IIT - Illinois Institute of Technology	4 Mil
-	Purdue Geddes	4 Mil
_	UColorado_HEP	1 Mil
_	UConn-HPC	886 K
	OU ATLAS	668 K
_	Utah-SLATE-Notchpeak	563 K
-	BNL ATLAS Tier1	544 K
-	UConn-OSG	536 K
	AMNH	475 K
-	Utah-SLATE-Lonepeak	446 K
-	Georgia Tech	443 K
	GLOW	421 K
	SLATE-K8S-UCHICAGO	410 K
_	MWT2 ATLAS UC	392 K
-	NWICG_NDCMS	365 K
-	Nebraska-CMS	338 K
-	ASU Research Computing	315 K
-	Texas Advanced Computing Center	280 K

Next Steps

- Computational resources are never enough!
- With new ground and spaced-based physics experiments coming online, there is always demand for a larger cluster, more storage, etc. to analyze the generated data.
- Another member of my research group has recently started using the OSG for the GAPS experiment.
- Hopefully, the OSG will continue to be a critical resource in our future projects.

