
Using High Throughput Computing for a
Simulation Study on Cross-Validation for
Model Evaluation in Psychological
Science

Hannah Moshontz, PhD

Background

● Goal pursuit in everyday life

● Machine learning for predicting complex,

multiply-determined outcomes

Technical / programming skills

● Advanced training in quantitative methodology

● Proficient w programming languages for statistics — SAS

and R

● Prior to this project, very limited BASH, no HTCondor

Project Background

● Lack of norms or guidance on machine learning practices

in psychological science

● People incorrectly interpreting / using cross-validated

model performance estimates in top journals

● Goal: characterize and give guidance on cross-validated

model performance estimates in data contexts typical of

psychological science

https://psyarxiv.com/ns9mj/

Simulation Study Overview

Simulation Study Overview

● Entailed running about 144,000 times the number of

models in a single ML study

● Within a single ML study, tens of thousands of models are

run. Run time is less than a minute to weeks, depending

on data context.

● Compute time well over 1 million hours

Simulation Study Overview

● Entailed running about 144,000 times the number of
models in a single ML study

● Within a single ML study, tens of thousands of models are
run. Run time is less than a minute to weeks, depending
on data context.

● Compute time well over 1 million hours

We didn’t understand the scale of this project initially.

Our software and scripts

Each job we submitted had:

● R script (.R)
● Arguments (.csv)
● PRE and POST scripts (.sh)
● Submit file (.sub)
● Executable file (.sh)
● (We started with DAGs, but didn’t use later)

We used notepad ++, vim, and later created all files in R.

Our software and scripts

Output from each batch

● Zipped outdata - for each job, a summary of the best

model performance, plus information about the model

(.rds)

● Zipped “job files” - the submit and executable files, the

args, the error files, the output files

● The log

How we tracked jobs

Errors and troubleshooting

● Simple errors we made

● Issues related to software when flocking/gliding

● Issues related to errors with our R script

● Issues related to how we broke jobs up / optimization

CHTC staff offered *tremendous* support, both via direct

contact and via the excellent HTCondor manual and other

online documentation and resources.

Simple errors with HTCondor

● Unix line endings

● Typos in our submit or executables

● Not moving files to the submit server

● Not running PRE.sh

● For big jobs, zipping too many at once

Issues related to flocking, gliding,
and R
● Needed to download a support tar (SLIBS) from the

SQUID servers

● We changed the version of R we were using, and had

issues with package dependencies in our package tar

● There was a set of machines on UW’s campus that were

having odd issues with base R

● Jobs would get booted when flocking/gliding (many of

our jobs were near or just over 8 hours)

Issues related to the project / R
scripts
● Adjustments to how we simulated data - reflection and

reviewer feedback

● A few contexts had so few positive cases that the models

failed, which didn’t produce the output that we were

expecting

Issues related to optimization
● Making a single zipped file that took hours to unzip, not

inspecting contents before unzipping
● We wrote the script in a way that was well-suited to being

broken down, but in rigid ways
● We starting running jobs before we had tested the most

complex contexts and hit a floor in how simple the jobs could
be (the most simple was still taking over 72 hours with a
particular algorithm)

● We didn’t understand that small efficiencies scale, and are
important (e.g., ranger vs RF)

Helper scripts
● Meta-script

○ created all files that needed to run a batch of jobs, including

changing line endings, making the R script, making the args file

○ for completed jobs, summarized the log

○ made and ran the other helper scripts

● Check / unzip script
○ checked the outdata and unzipped

○ produced an args file for any missing jobs

● Aggregation script
○ Made data comparable no matter how jobs were broken up

Advice

● Automate what you can to prevent errors & save time
○ Make files and folders descriptive and machine-readable

● Document everything well
○ keep detailed notes about testing and completed jobs
○ save HTC files

● Be mindful of the resources you will use and are using
○ computing hours can be abstract and hard to estimate! check how

many hours you / your team has used
○ reevaluate the scope of your project periodically
○ avoid waste through preparation and testing

Advice

● Use the HTCondor manual
○ there are so many useful functions and so much information that

you have access to

● Become a pro troubleshooter
○ learn to systematically rule out basic issues and diagnose the issue

you have

○ reach out for help with detailed information about what you have

done, and with jobids, logs, and other documentation

● Describe the time/resource constraints that informed

your research
○ reviewers may not appreciate these constraints unless explained

Closing thoughts

● We couldn’t have conducted this study in my lifetime

without HTC

● The CHTC staff are an incredible resource, and this

project wouldn’t have been completed without them and

the HTCondor manual

● A great training / learning experience re: general

programming skills (e.g., BASH, troubleshooting /

problem-solving)

Thank you

