
OSG Virtual School Showcase, August 11, 2021

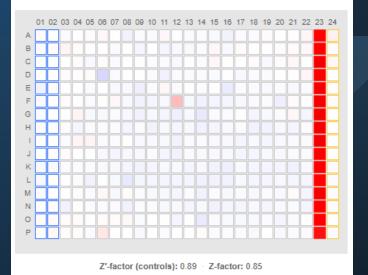
Scaling Virtual Screening to Ultra-Large Virtual Chemical Libraries

Spencer S. Ericksen

UW Carbone Cancer Center Drug Development Core Small Molecule Screening Facility

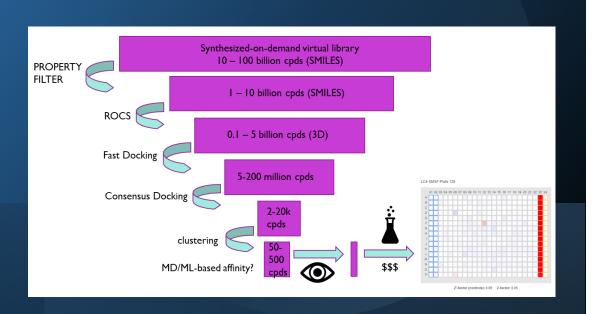
ssericksen@wisc.edu

Carbone Cancer Center UNIVERSITY OF WISCONSIN SCHOOL OF MEDICINE AND PUBLIC HEALTH



Early-stage drug discovery

LC4-SMSF-Plate 126



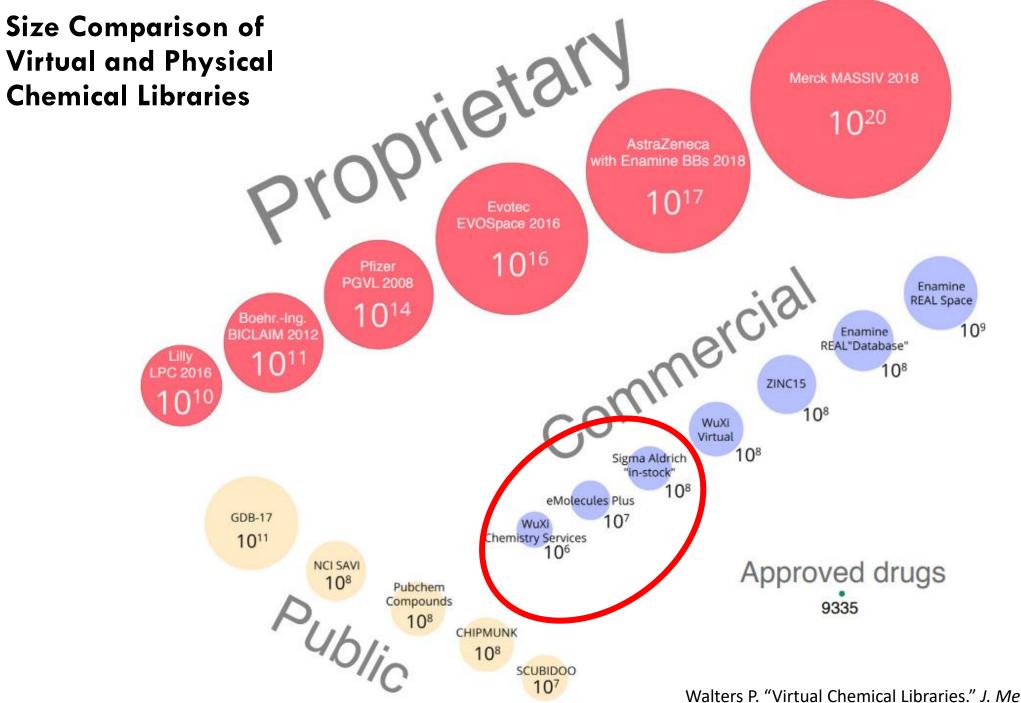
 Find rare molecules that affect a specific biological process. Develop as probes or drug candidates.

- Early-stage drug discovery is a needlein-the-haystack problem—could be 10³³ drug-like organic molecules.*
- High-Throughput Screening (HTS) is too expensive.

*Polishchuk PG, et al., JCAMD 2013 27(8):675-9

What is Virtual Screening?

- Virtual Screening: use a computer model to predict "active" molecules within large molecule sets.
- Structure-Based VS uses physicsbased model to predict whether molecule will bind target protein
- Ligand-Based VS uses ML model to relate molecule structure to a property.
- Goal: reduce number of molecules that must be tested


HTS vs VS

Real Screening (HTS)

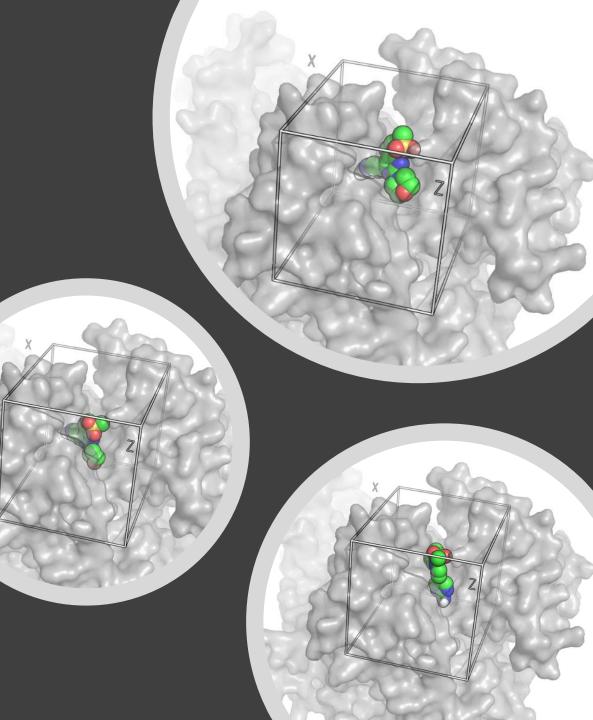
Virtual Screening + Real Focused Screening

- test 10⁴-10⁶ cpds
- generates valuable real data
- expensive
- noisy
- can't scale to ultra-large libraries
- assay must scale to 10⁴-10⁶

- VS 10⁸-10¹² \rightarrow test 10²-10⁴ cpds
- limited real data generation
- cheap
- VERY noisy
- scales to ultra-large libraries (10⁹-10¹²)
- VS models have data requirements

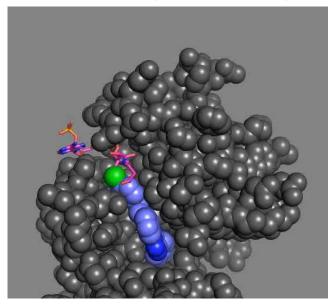
Hoffmann & Gastreich "The next level in chemical space navigation: going far beyond enumerable compound libraries." *Drug Discovery Today*, 2019, 24, 5, 1148-1156.

Walters P. "Virtual Chemical Libraries." J. Med. Chem. 2019, 62, 3, 1116-1124

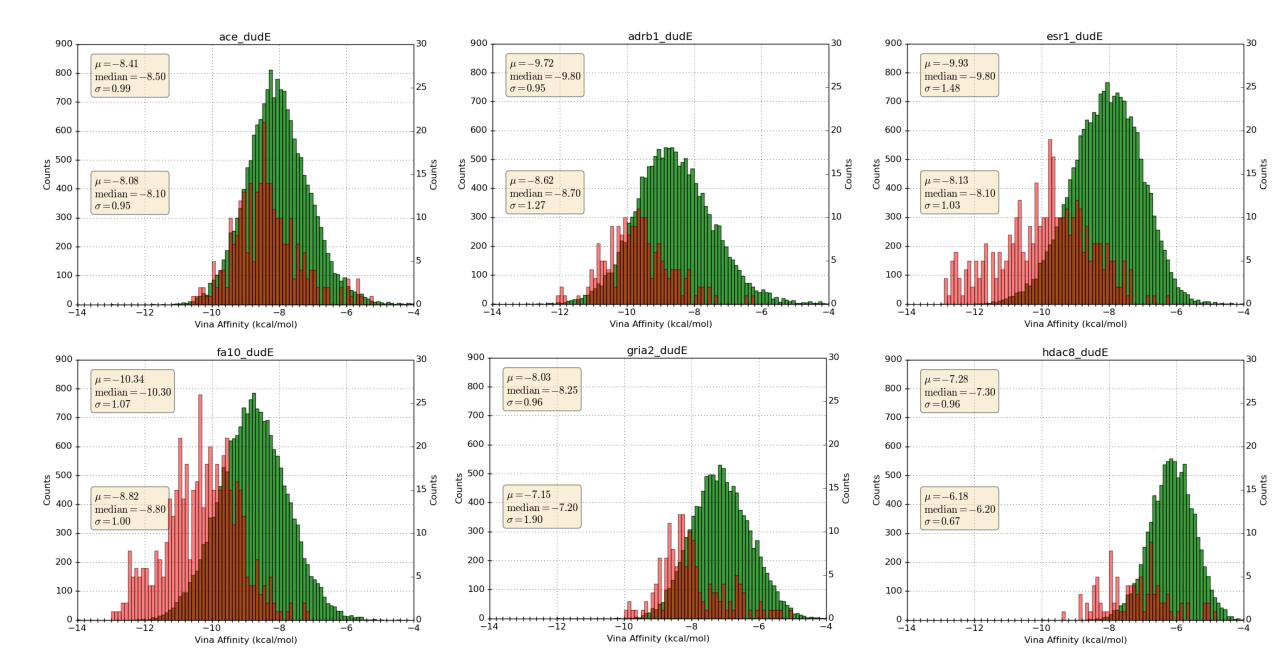


Structure-based virtual screening

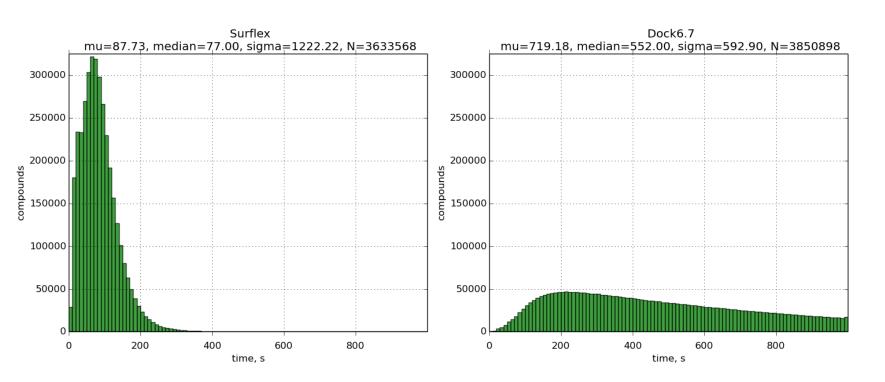
SBVS


What is docking?

- Docking uses 3D molecular models to find best fit of molecule to active site of target.
- Search guided by a scoring function that evaluates favorability of each sampled configuration.
- Many docking programs are available.
- Docking score is crude estimate of binding favorability for a given compound.


Structure-based virtual screening

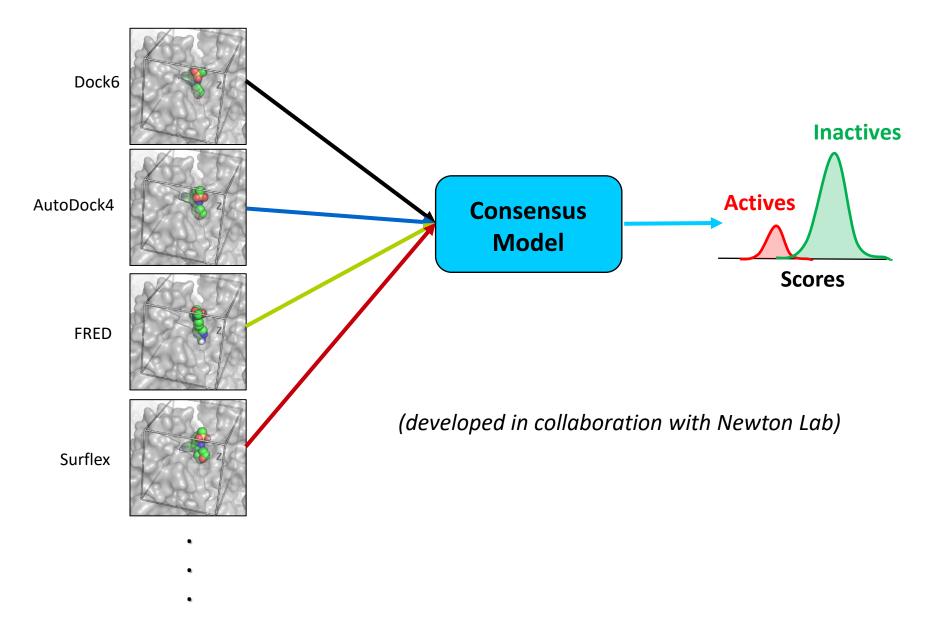
Dock Compound Library


MOLID	SCORE		MOLID	SCORE		
ZINC36206438	58.63		CHEMBL323258	74.94		
ZINC59310217	58.72		CHEMBL38532	74.19		
ZINC61596674	56.35		ZINC36207525	69.07		
ZINC67458535	47.40		ZINC14010625	68.48		
CHEMBL1221861	60.66		ZINC21076300	68.36		
ZINC10123401	52.39		ZINC61908006	66.40		
ZINC64526095	66.13		ZINC64526095	66.13		
ZINC24002103	56.72		CHEMBL419085	65.96		Score Distributions
ZINC09612655	58.84		CHEMBL400392	65.96		
ZINC24002105	38.95		ZINC19899314	65.54		
CHEMBL38532	74.19		CHEMBL274782	63.97		
ZINC40824467	50.10		ZINC25520953	63.14		
ZINC59829723	58.29		ZINC58790750	62.53		
ZINC37520295	44.78		ZINC60343267	62.18		
ZINC49812309	38.01	Sort Compounds	ZINC40947055	61.87		
ZINC14558020	53.31	Jon Compounds	CHEMBL1221861	60.66		lune et trans
CHEMBL472090 ZINC36207525	58.71 69.07		ZINC36611787	60.04		Inactives
ZINC14010625	68.48	by Docking	ZINC09612655 ZINC59310217	58.84 58.72		
CHEMBL274782	63.97	ον μοςκίηα	ZINC23197109	58.72		
ZINC63949457	55.35		CHEMBL472090	58.71		
ZINC39657146	48.74	~	ZINC36206438	58.63		
ZINC23197109	58.72	Scores	ZINC35844701	58.57		
ZINC25520953	63.14		CHEMBL26183	58.56		
ZINC09282496	43.71		ZINC05091951	58.47	Number of	
ZINC60343267	62.18		ZINC59829723	58.29		
ZINC58790750	62.53		ZINC24002103	56.72		Actives
CHEMBL400392	65.96		ZINC64684798	56.64	Compounds	
ZINC52096905	49.96		ZINC61596674	56.35		
ZINC48922871	49.59		ZINC15666896	55.50		
ZINC33058380	45.11		ZINC63949457	55.35		
ZINC64684798	56.64		ZINC37619890	54.49		
ZINC21076300	68.36		ZINC15429053	54.10		
ZINC29461868	50.65		ZINC14558020	53.31		
CHEMBL26183	58.56		ZINC34747432	52.55		
ZINC61908006	66.40		ZINC10123401	52.39		
ZINC15429053	54.10		ZINC29461868	50.65		
CHEMBL323258	74.94		ZINC40824467	50.10		
ZINC05091951	58.47		ZINC52096905	49.96		Scores
ZINC02759924	48.25 42.68		ZINC39914438	49.68		500105
ZINC54596097 ZINC19899314			ZINC48922871	49.59		
ZINC19899314 ZINC53113244	65.54 38.99		ZINC39657146 ZINC00706129	48.74		
ZINC33113244 ZINC40947055	61.87		ZINC00706129 ZINC02759924	48.34 48.25		
ZINC36611787	60.04		ZINC02759924 ZINC43220997	48.25		
CHEMBL419085	65.96		ZINC43220537 ZINC67458535	47.40		
ZINC35844701	58.57		ZINC33058380	45.11		
ZINC01296699	39.07		ZINC37520295	44.78		
ZINC39914438	49.68		ZINC09282496	43.71		
ZINC00706129	48.34		ZINC54596097	42.68		
ZINC34747432	52.55		ZINC01296699	39.07		
ZINC43220997	47.45		ZINC53113244	38.99		
ZINC37619890	54.49		ZINC24002105	38.95		
ZINC15666896	55.50		ZINC49812309	38.01		

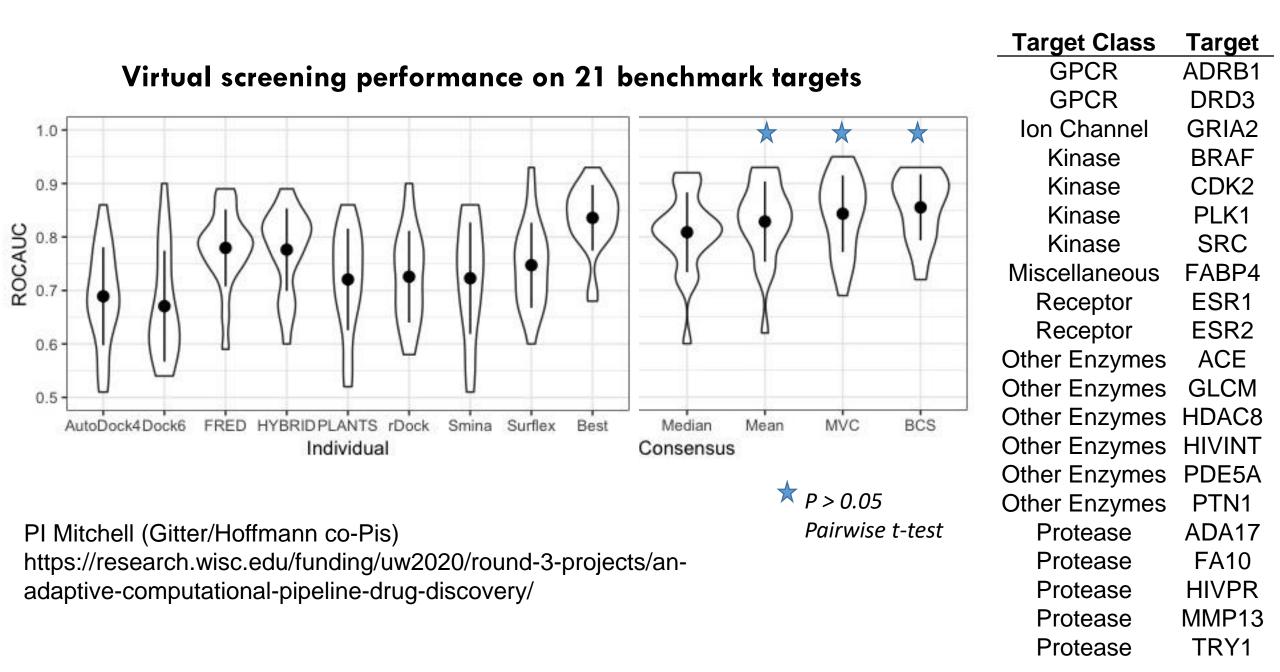
Docking-based VS performance on 6 benchmark targets from DUD-E

Docking Compute Expense

- Compute time for docking depends the search space, search quality, and complexity of the scoring function.
- To dock millions of compounds, we cut corners.
- Docking time varies between programs (~1 minute/compound).



(seconds)


Program	Time	Std. Dev.
AD4	435.6	197.1
Dock	719.2	592.9
Fred	15.6	5.7
Hybrid	9.3	2.9
Plants	43.4	20.5
rDock	49.3	26.7
Smina	250.1	172.8
Surflex	78.9	1159.6

Consensus Scoring

- No single program is reliable
- Use multiple docking programs
- Consensus scores are more reliable than those from any individual docking program.

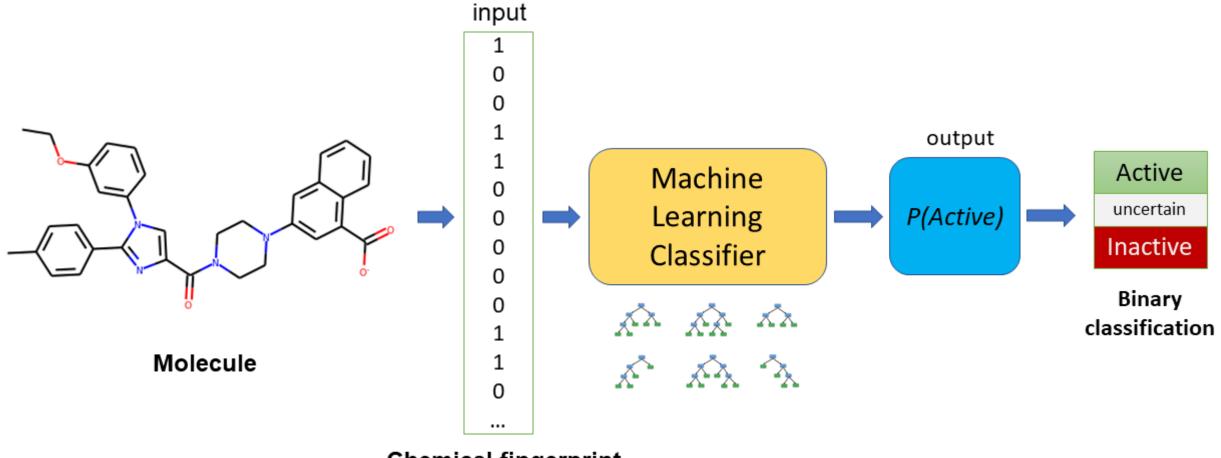
Ericksen et al., J. Chem. Inf. Model. 2017, 57, 7, 1579-1590 DOI: 10.1021/acs.jcim.7b00153

Ericksen et al., J. Chem. Inf. Model. 2017, 57, 7, 1579-1590 DOI: 10.1021/acs.jcim.7b00153

How do we scale with HTC resources?

- Each docking run is independent--*pleasantly parallelizable*!
- Typical docking codes don't benefit from specialized hardware or multiple cores.
- To maximize throughput:
 - Enable "Flock" and "Glide" to access more nodes.
 - Split compound library up into small chunks.
 - Number of compounds should run in ~2hr for a given docking program.
 - Chunk size varies from 5—500 compounds!
 - Dock each chunk on a single slot to scavenge ANY open slots. Dock compounds in chunk serially.
 - Checkpointing is enabled and a wrapper script is used to track the compounds completed in case job is evicted and migrates to another node.

How does SBVS benefit from HTC?


- Couldn't really see how docking-based VS works without proper testing/validation!
- Examine performance over many targets
- Benchmarking of different docking programs
- Extensive docking parameter testing/validation
- Dock large compound sets
 - Routinely perform SBVS on libraries of 10-40 million cpds
- Hypothetical 100 node cluster = 3.5 million/day
- <u>- 100s of millions to BILLIONS of dockings!</u>

ligand-based virtual screening

LBVS

Ligand-Based Virtual Screening—a ML hit-finding model

Chemical fingerprint

Gitter Lab: Liu, et al., "Practical Model Selection for Prospective Virtual Screening." J. Chem. Inf. Model. 2019, 59, 1, 282–293. https://doi.org/10.1021/acs.jcim.8b00363

VS on Ultra-Large Virtual Chemical Library

Train RF model on prior screening data (PriA-SSB interaction)

- LifeChem Diversity Sets 1-3:
- LifeChem Diversity Set 4:
- MLPCN (NIH probe set):

75,000 cpds (primary and retest) 25,000 cpds (primary only) 337,000 cpds (primary and retest)

Training Data: 427,000 cpds, number of actives: 554 (hit rate = 0.13%)

VS Procedure

- Download Enamine REAL database 1.1 billion molecules (Oct 11, 2019)
- Split library up into 18 batches (each 60.3 million)
 - Average compute time of **3.24 ms per compound**
 - Mean run time per 60 million cpd batch = 53.2 hrs

https://enamine.net/compound-collections/real-compounds/real-database

Gitter Lab: Alnammi M. et al., "Scalable supervised learning for synthesize-on-demand chemical libraries." manuscript in prep

Dose-response testing of 68									
IC50 (uM)	comp		ds o	rde	red	fro	m E	nan	
0.5	93.2	40.8	21.0	11.6	8.1	6.6	5.9	8.6	1
2.1 0.5	78.2	66.2 69.3	45.9 50.5	25.2 24.2	10.3 11.4	7.8 8.8	7.1 7.1	6.0 10.3	1
3.4	79.7	74.1	63.1	33.9	9.9	6.0	6.2	5.3	1
4.4	85.3	78.5	72.0	47.9	11.8	4.5	3.5	3.4	1
4.8	72.8	63.2	54.6	43.7	33.6	19.4	10.5	8.3	1
4.9 6.1	85.7 80.1	77.9	70.4 67.8	54.4 53.2	19.6 33.5	8.0 15.1	5.6 9.0	5.7 8.6	1
6.8	88.1	83.0	81.0	68.8	35.0	10.4	5.5	4.5	1
9.1	85.0	81.5	81.0	73.0	50.9	14.3	6.5	6.2	1
3.9	119.8	86.5	82.0	68.2	47.7	15.7	7.3	9.8	1
2.4 10.8	126.3 86.8	91.8 84.3	81.4 79.5	72.5	47.3 58.9	19.4 24.2	7.6 8.8	8.5 6.2	1
0.5	132.0	91.3	82.4	73.1	56.0	24.0	9.9	9.5	1
12.4	85.5	85.9	85.4	79.8	63.8	30.9	8.0	5.0	1
48.2	81.6	75.7	67.9	60.5	55.0	45.8	30.8	25.8	1
66.0 12.6	121.5 87.7	88.3 87.0	82.6 82.8	75.7 83.9	63.1 71.1	37.5 28.1	9.1 8.0	7.2	1
12.1	89.2	89.7	86.1	80.1	66.8	30.2	10.3	6.7	1
11.5	91.4	87.2	87.5	84.5	67.7	26.5	10.9	6.3	1
15.5 35.4	83.3 123.9	88.0 94.4	77.3 86.1	74.0 81.9	62.2 68.7	41.1 40.8	24.7 9.4	12.3 8.4	1
13.9	87.7	86.1	87.4	85.7	72.9	38.0	11.4	9.3	1
21.0	86.6	83.3	82.5	75.9	67.8	47.8	24.9	9.2	1
15.7	87.8	89.6	89.8	83.9	70.5	43.8	15.8	5.7	1
7.0 66.0	80.0 125.3	78.9	78.9 86.0	71.7 86.3	53.7 74.4	44.8 49.5	39.8 15.4	36.9 10.8	1
22.2	90.0	90.6	92.1	86.8	76.4	62.5	22.7	7.2	1
37.8	88.5	87.6	87.0	80.1	77.6	62.3	36.5	11.0	1
24.9 66.0	84.6 140.0	87.5 94.7	88.0 97.5	89.1 91.0	80.0 83.1	65.2 62.3	29.9 25.1	8.9 10.1	1
20.2	86.5	85.7	83.3	80.3	80.3	68.4	50.3	43.6	0
66.0	136.0	100.0	89.3	86.0	86.7	74.1	49.7	28.3	1
66.0	83.7	86.8	87.7	82.8	76.5	63.1	60.3	65.1	0
66.0 7.3	86.9 131.5	87.8 93.7	85.9 90.9	86.7 90.4	78.5 90.5	78.8 82.4	71.7 70.5	69.4 49.2	0
66.0	122.0	95.1	90.0	84.9	88.9	84.5	74.2	63.6	0
66.0	83.3	83.6	80.6	82.6	82.0	86.1	84.0	86.0	0
66.0 66.0	84.2 134.3	82.1 95.6	84.5 87.6	83.4 85.4	83.3 85.2	81.6 84.7	84.1 77.4	87.9 72.8	0
66.0	134.5	97.4	87.2	83.1	84.6	86.1	77.9	74.2	0
66.0	136.5	93.6	88.8	89.0	87.8	89.4	78.2	63.8	0
66.0 66.0	85.7 89.4	86.8 88.1	83.5 89.9	80.2 89.3	87.7 81.7	82.1 82.2	84.7 80.6	87.2 80.9	0
66.0	89.4	84.5	89.9	89.5	86.9	82.2	85.0	80.9	0
66.0	86.8	85.6	84.8	86.7	86.2	83.9	88.4	85.0	0
66.0	134.3	100.4	87.4	88.0	89.0	87.8	77.2	71.0	0
66.0 66.0	89.2 95.1	88.1 87.1	87.4 84.9	89.4 87.5	88.2 87.3	84.2 88.0	82.2 86.8	82.8 81.4	0
66.0	83.7	85.4	88.7	88.1	86.9	86.8	85.6	84.4	ō
66.0	131.0	93.0	91.7	84.5	87.9	87.0	82.7	79.7	0
66.0 66.0	129.3 88.1	95.0 88.0	89.2 83.6	86.5 85.4	90.2 83.6	87.5 89.5	80.7 86.7	78.1	0
66.0	136.3	93.7	92.4	86.6	91.3	81.6	85.5	78.3	o
66.0	138.0	96.4	92.7	85.1	89.7	82.9	84.5	78.9	0
66.0	85.0	88.3	91.9	88.0	87.6	88.7	84.8	86.7	0
66.0 66.0	87.8 88.2	88.8 88.0	90.8 88.1	88.7 89.4	88.9 88.9	84.7 91.0	89.5 90.2	84.7 87.0	0
66.0	130.5	94.1	93.9	93.5	93.2	86.5	81.2	81.4	0
66.0	119.8	91.6	93.1	90.0	88.0	87.7	90.8	84.4	0
66.0 66.0	126.3 89.3	96.0 90.8	92.6 91.0	91.1 89.7	92.1 86.5	87.8 88.6	85.4 88.2	81.5 91.7	0
66.0	141.3	99.5	92.2	89.1	91.5	86.7	87.8	82.3	0
66.0	131.5	95.4	94.9	91.6	95.0	88.0	87.6	85.4	0
66.0 66.0	125.3 133.0	94.6 96.7	94.9	89.9	90.1	93.7	88.5	87.4	0
66.0	85.7	96.7	92.9 92.9	91.7 92.2	93.3 89.1	91.3 92.9	91.6 96.6	97.2 101.8	0
66.0	140.8	101.8	93.2	93.1	97.6	108.8	125.5	170.5	0

Conclusions

HTC is a fabulous resource for VS.

Effective VS requires rapid cycles of development, testing, validation. HTS enables this!

HTC allows VS to scale to new ultra-large virtual chemical libraries.

Acknowledgments

- CHTC Facilitators:
 - Lauren Michael & Christina Koch
- Tony Gitter & Michael Newton
 - "A Machine Learning Platform for Adaptive Chemical Screening." 1R01GM135631-01A1
- UWCCC-Drug Development Core

Tim Bugni, Mike Hoffmann, Weiping Tang

Computational Chemists

Scott Wildman, Moayad Alnammi, Ken Satyshur

