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Early-stage drug discovery
• Find rare molecules that affect a specific 

biological process. Develop as probes or 
drug candidates.

• Early-stage drug discovery is a needle-
in-the-haystack problem—could be 1033

drug-like organic molecules.*

• High-Throughput Screening (HTS) is too 
expensive. 

*Polishchuk PG, et al., JCAMD 2013 27(8):675-9



What is Virtual 
Screening?

• Virtual Screening: use a computer 
model to predict “active” molecules 
within large molecule sets.

• Structure-Based VS uses physics-
based model to predict whether 
molecule will bind target protein 

• Ligand-Based VS uses ML model to 
relate molecule structure to a 
property.

• Goal: reduce number of molecules 
that must be tested



HTS vs VS

Real Screening (HTS)

• test 104-106 cpds

• generates valuable real data

• expensive

• noisy

• can’t scale to ultra-large libraries

• assay must scale to 104-106

Virtual Screening + Real Focused Screening

• VS 108-1012
→ test 102-104 cpds

• limited real data generation

• cheap

• VERY noisy

• scales to ultra-large libraries (109-1012)

• VS models have data requirements



Hoffmann & Gastreich “The 
next level in chemical space 
navigation: going far beyond 
enumerable compound 
libraries.” Drug Discovery 
Today, 2019, 24, 5, 1148-1156. 

Size Comparison of 
Virtual and Physical 
Chemical Libraries

Walters P. “Virtual Chemical Libraries.” J. Med. Chem. 2019, 62, 3, 1116-1124



SBVS

Structure-based virtual 
screening



What is docking?

• Docking uses 3D molecular 
models to find best fit of molecule 
to active site of target.

• Search guided by a scoring 
function that evaluates 
favorability of each sampled 
configuration.

• Many docking programs are 
available.

• Docking score is crude estimate of 
binding favorability for a given 
compound.



Sort Compounds 

by Docking 

Scores

Score Distributions

Inactives

Actives

Structure-based virtual screening

Scores

Number of
Compounds

MOLID SCORE
ZINC36206438 58.63
ZINC59310217 58.72
ZINC61596674 56.35
ZINC67458535 47.40
CHEMBL1221861 60.66
ZINC10123401 52.39
ZINC64526095 66.13
ZINC24002103 56.72
ZINC09612655 58.84
ZINC24002105 38.95
CHEMBL38532 74.19
ZINC40824467 50.10
ZINC59829723 58.29
ZINC37520295 44.78
ZINC49812309 38.01
ZINC14558020 53.31
CHEMBL472090 58.71
ZINC36207525 69.07
ZINC14010625 68.48
CHEMBL274782 63.97
ZINC63949457 55.35
ZINC39657146 48.74
ZINC23197109 58.72
ZINC25520953 63.14
ZINC09282496 43.71
ZINC60343267 62.18
ZINC58790750 62.53
CHEMBL400392 65.96
ZINC52096905 49.96
ZINC48922871 49.59
ZINC33058380 45.11
ZINC64684798 56.64
ZINC21076300 68.36
ZINC29461868 50.65
CHEMBL26183 58.56
ZINC61908006 66.40
ZINC15429053 54.10
CHEMBL323258 74.94
ZINC05091951 58.47
ZINC02759924 48.25
ZINC54596097 42.68
ZINC19899314 65.54
ZINC53113244 38.99
ZINC40947055 61.87
ZINC36611787 60.04
CHEMBL419085 65.96
ZINC35844701 58.57
ZINC01296699 39.07
ZINC39914438 49.68
ZINC00706129 48.34
ZINC34747432 52.55
ZINC43220997 47.45
ZINC37619890 54.49
ZINC15666896 55.50
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ZINC05091951 58.47
ZINC59829723 58.29
ZINC24002103 56.72
ZINC64684798 56.64
ZINC61596674 56.35
ZINC15666896 55.50
ZINC63949457 55.35
ZINC37619890 54.49
ZINC15429053 54.10
ZINC14558020 53.31
ZINC34747432 52.55
ZINC10123401 52.39
ZINC29461868 50.65
ZINC40824467 50.10
ZINC52096905 49.96
ZINC39914438 49.68
ZINC48922871 49.59
ZINC39657146 48.74
ZINC00706129 48.34
ZINC02759924 48.25
ZINC43220997 47.45
ZINC67458535 47.40
ZINC33058380 45.11
ZINC37520295 44.78
ZINC09282496 43.71
ZINC54596097 42.68
ZINC01296699 39.07
ZINC53113244 38.99
ZINC24002105 38.95
ZINC49812309 38.01

Dock Compound Library



Docking-based VS performance on 6 benchmark targets from DUD-E



Docking Compute Expense

Program Time Std. Dev.
AD4 435.6 197.1
Dock 719.2 592.9
Fred 15.6 5.7
Hybrid 9.3 2.9
Plants 43.4 20.5
rDock 49.3 26.7
Smina 250.1 172.8
Surflex 78.9 1159.6

▪ Compute time for docking depends the search space, search 
quality, and complexity of the scoring function.

▪ To dock millions of compounds, we cut corners.

▪ Docking time varies between programs (~1 minute/compound).

(seconds)



Dock6

AutoDock4

FRED

Surflex

Inactives

Actives

Consensus Scoring 

Scores

Consensus 
Model

.

.

.

• No single program is 
reliable

• Use multiple docking 
programs

• Consensus scores 
are more reliable 
than those from any 
individual docking 
program.

(developed in collaboration with Newton Lab)

Ericksen et al.,  J. Chem. Inf. Model. 2017, 57, 7, 1579-1590        DOI: 10.1021/acs.jcim.7b00153



Ericksen et al.,  J. Chem. Inf. Model. 2017, 57, 7, 1579-1590        DOI: 10.1021/acs.jcim.7b00153

Virtual screening performance on 21 benchmark targets

Target Class Target

GPCR ADRB1

GPCR DRD3

Ion Channel GRIA2

Kinase BRAF

Kinase CDK2

Kinase PLK1

Kinase SRC

Miscellaneous FABP4

Receptor ESR1

Receptor ESR2

Other Enzymes ACE

Other Enzymes GLCM

Other Enzymes HDAC8

Other Enzymes HIVINT

Other Enzymes PDE5A

Other Enzymes PTN1

Protease ADA17

Protease FA10

Protease HIVPR

Protease MMP13

Protease TRY1

PI Mitchell (Gitter/Hoffmann co-Pis)

https://research.wisc.edu/funding/uw2020/round-3-projects/an-

adaptive-computational-pipeline-drug-discovery/

P > 0.05 
Pairwise t-test



How do we scale with HTC resources?

• Each docking run is independent--pleasantly parallelizable!

• Typical docking codes don’t benefit from specialized hardware or multiple cores.

• To maximize throughput:

• Enable “Flock” and “Glide” to access more nodes.

• Split compound library up into small chunks. 

• Number of compounds should run in ~2hr for a given docking program. 

• Chunk size varies from 5—500 compounds!

• Dock each chunk on a single slot to scavenge ANY open slots. Dock compounds in chunk 
serially.

• Checkpointing is enabled and a wrapper script is used to track the compounds completed in 
case job is evicted and migrates to another node.



How does SBVS benefit from HTC?

• Couldn’t really see how docking-based VS works without proper testing/validation!

• Examine performance over many targets

• Benchmarking of different docking programs

• Extensive docking parameter testing/validation

• Dock large compound sets

• Routinely perform SBVS on libraries of 10-40 million cpds

• Hypothetical 100 node cluster = 3.5 million/day

• 100s of millions to BILLIONS of dockings!



LBVS

ligand-based virtual 
screening



Ligand-Based Virtual Screening—a ML hit-finding model

Gitter Lab:  Liu, et al., “Practical Model Selection for Prospective Virtual Screening.” J. Chem. Inf. Model. 2019, 59, 1, 282–293. 
https://doi.org/10.1021/acs.jcim.8b00363

https://doi.org/10.1021/acs.jcim.8b00363


Dose-response testing of 68 

compounds ordered from Enamine

Gitter Lab: Alnammi M. et al., “Scalable supervised learning for synthesize-on-demand 
chemical libraries.” manuscript in prep

VS on Ultra-Large Virtual Chemical Library

Train RF model on prior screening data (PriA-SSB interaction)

• LifeChem Diversity Sets 1-3: 75,000 cpds (primary and retest)

• LifeChem Diversity Set 4: 25,000 cpds (primary only)

• MLPCN (NIH probe set): 337,000 cpds (primary and retest)

Training Data:  427,000 cpds, number of actives: 554  (hit rate = 0.13%)

VS Procedure

• Download Enamine REAL database 1.1 billion molecules (Oct 11, 2019)

• Split library up into 18 batches (each 60.3 million)

• Average compute time of 3.24 ms per compound

• Mean run time per 60 million cpd batch = 53.2 hrs

https://enamine.net/compound-collections/real-compounds/real-database



Conclusions

HTC is a fabulous resource for VS.

Effective VS requires rapid cycles of development, 
testing, validation. HTS enables this!

HTC allows VS to scale to new ultra-large virtual 
chemical libraries.
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