
Checkpointing on OSPool

Showmic Islam
Research Computing Facilitator@ OSG

HPC Application Specialist
Holland Computing Center

University of Nebraska-Lincoln

1

Outline

What?
What is checkpointing?

What jobs are suitable for
checkpointing?

Why?
Why checkpointing is needed?

How?
How to checkpoint?

Different methods for
checkpointing

2

What?

3

What is Checkpointing?
• According to ChatGPT- Checkpointing is a

technique to save the state of a computation
so that it can be resumed later without losing
progress.
• Analogy: Saving progress in a game

periodically
• The executable periodically saves its

progress to disk – a self-made checkpoint –
so that it can resume from that point if
interrupted later, losing minimal progress

4

Sa
ve

 g
am

e
fro

m
 th

e
N

ou
n

Pr
oj

ec
t

5

• Ability to checkpoint and restart:
• Checkpoint: Periodically write state to a file on

disk.
• Restart: Code can both find the checkpoint file

and can resume from it.
• Exit: Code exits with a non-zero exit code after

writing a certain number of checkpoints, exits
normally after writing final output.

• (May need a wrapper script to do some of this.)
• Ability to checkpoint sufficiently*

frequently

Requirement of Jobs

Fi
le

 b
y

Ta
nv

ir
Is

la
m

 fr
om

 th
e

N
ou

n
Pr

oj
ec

t
G

ea
rs

 b
y

G
re

go
r C

re
sn

ar
 fr

om
 th

e
N

ou
n

Pr
oj

ec
t

* Varies by code and available resources

Why?

6

7

Why to Checkpoint

8

• Interruptions happen:
• Hardware or networking failures
• Cluster/node policy (jobs can only run for 8

hours before getting killed)
• Using opportunistic or backfill resources with

no runtime guarantee
• Self-checkpointing allows you to make

progress through interruptions, especially
for longer-running jobs.

Li
gh

tn
in

g
by

 B
er

na
r N

ov
al

yi
 fr

om
 th

e
N

ou
n

Pr
oj

ec
t

• The maximum allowed job duration on the
OSPool is 20 hours*

• Jobs on the OSPool runs on an
opportunistic manner

• The longer a job runs on OSPool the greater
the probability that your job may get
interrupted

• Checkpointing removes the wall-time limit
on the OSPool

• Checkpointing increases the goodput of the
jobs

Characteristics of OSPool

9

4. Jobs run on

OSPool Member Sites

Co
m

pu
te

r
by

 m
ira

cl
e

fr
om

 N
ou

nP
ro

je
ct

.c
om

La
pt

op
 b

y
Pe

tr
 B

ile
k

fr
om

 N
ou

nP
ro

je
ct

.c
om

Other Resources
(Cloud, cluster allocations)

How?

10

11

• Exit-driven self-checkpointing
• Since HTCondor ≥ 8.9.7
• Waaaay better for most use cases, esp. in OSG
• What is shown here

• Eviction-driven self-checkpointing
• Not even worth talking about for OSG!
• Documented in the HTCondor Manual
• But don’t use it 😁

Ways to Checkpoint

Executable Exits After Checkpoint

• Each executable run:
• Produces checkpoint file(s)
• Exits with a specific code when checkpointing, and a final exit code when done.

• Note that the executable, on its own, won't run a complete execution. It needs
an external process to make it repeat.

exit(85) exit(85) exit(85) exit(0)

x N

12

Save Checkpoint File/Resume with
HTCondor

• HTCondor will:
• Restart the executable until the overall calculation is done (exit 0).
• Copy the checkpoint file(s) to a persistent location, to facilitate restarts if the job is

interrupted.

exit(85) exit(85) exit(85) exit(0)

x N

13

Save Checkpoint File/Resume with
HTCondor

executable =
checkpoint_exit_code = 85
transfer_checkpoint_files =

exit(85) exit(85) exit(85) exit(0)

x N

14

executable = my_software

transfer_input_files = my_input.txt
transfer_checkpoint_files = checkpoint.txt

log = example.log
error = example.err
output = example.out
transfer_output_files = my_output.txt

checkpoint_exit_code = 85

queue

15

Example Submit file

Job Submitted

16

Access Point/
job.submit
executable.py

job.log

Job Starts, Executable Starts

17

Access Point/
Execute Directory/

job.submit
executable.py

job.log executable.py

_condor_stdout
_condor_stderr

executable.py
checkpoint.txt

_condor_stdout
_condor_stderr

Executable Checkpoints

18

Access Point/
job.submit
executable.py

job.log

Execute Directory/

executable.py
checkpoint.txt

_condor_stdout
_condor_stderr

Executable Exits, Checkpoint Spooled

19

Access Point/
job.submit
executable.py

job.log

Spool Directory/
checkpoint.txt
_condor_stdout
_condor_stderr

exit 85

Execute Directory/

executable.py
checkpoint.txt

_condor_stdout
_condor_stderr

Executable Started Again

20

Access Point/
job.submit
executable.py

job.log

Spool Directory/
checkpoint.txt
_condor_stdout
_condor_stderr

Execute Directory/

Checkpoint Cycle Continues

21

Executable Interrupted

22

Access Point/
job.submit
executable.py

job.log

Spool Directory/
checkpoint.txt
_condor_stdout
_condor_stderr

Execute Directory/

executable.py
checkpoint.txt

_condor_stdout
_condor_stderr

Job Idle

23

Access Point/
job.submit
executable.py

job.log

Spool Directory/
checkpoint.txt
_condor_stdout
_condor_stderr

Job Restarts, Executable Restarts

24

Access Point/
job.submit
executable.py

job.log

Spool Directory/
checkpoint.txt
_condor_stdout
_condor_stderr

Execute Directory/

executable.py
checkpoint.txt

_condor_stdout
_condor_stderr

Checkpoint Cycle Continues

25

Final Execution: Executable Creates
Output

26

Access Point/
Execute Directory/job.submit

executable.py

job.log executable.py
checkpoint.txt
results.txt
_condor_stdout
_condor_stderrSpool Directory/

checkpoint.txt
_condor_stdout
_condor_stderr

exit 0

Output Returned

27

Access Point/
job.submit
executable.py
checkpoint.txt
results.txt
job.log
job.out
job.err

Think About Output Files
• Same mechanisms for transferring output at the end of the job

(triggered by executable's exit 0)
• New output files are transferred back to the submission directory
• To transfer specific output files or directories, use:

transfer_output_files = file1, outputdir

• ANY output file you want to save between executable iterations
(like a log file), should be included in the list of

transfer_checkpoint_files

• Older versions of HTCondor may have different default
behavior

28

Testing and Troubleshooting
• Simulate a job interruption:
• condor_vacate_job JobID

• Examine your checkpoint files in the SPOOL directory:
• Use condor_evicted_files JobID
• To find the SPOOL directory: condor_config_val SPOOL

• Look at the HTCondor job log for file transfer information.

29

Sample Code

30

Best Practices
• Scaling Up

• How many jobs will be
checkpointing?

• How big are the checkpoint files?
• How much data is that total?

• Checkpoint Frequency
• How long does it take to produce a

checkpoint and resume?
• How likely is your job to be

interrupted?

31

Avoid:
- Filling up the SPOOL directory.
- Transferring large checkpoint

files.

Avoid:
- Spending more time

checkpointing than running.
- Jobs that will never reach a

checkpoint.

Alternative Checkpointing Method
• If code can't exit after each checkpoint, but only run +

checkpoint continuously, transfer of checkpoint files
can be triggered by eviction.
• Search for "when_to_transfer_output" on the

condor_submit manual page; read about ON_EXIT_OR
EVICT
• This method of backing up checkpoint files is less

resilient, as it won't work for other job interruption
reasons (hardware issues, killed processes, held jobs)

32

https://htcondor.readthedocs.io/en/latest/man-pages/condor_submit.html

Resources
• HTCondor Manual
• Manual > Users' Manual > Self Checkpointing Applications
• https://htcondor.readthedocs.io/en/latest/users-manual/self-

checkpointing-applications.html
• Materials from the OSG Virtual School 2021
• OSG Virtual School > Materials > Overview or Checkpointing Exercises
• https://opensciencegrid.org/virtual-school-2021/materials/#self-

checkpointing-for-long-running-jobs

33

https://htcondor.readthedocs.io/en/latest/users-manual/self-checkpointing-applications.html
https://htcondor.readthedocs.io/en/latest/users-manual/self-checkpointing-applications.html
https://opensciencegrid.org/virtual-school-2021/materials/
https://opensciencegrid.org/virtual-school-2021/materials/

Acknowledgements
Todd L Miller; Christina Koch
This work is supported by NSF under Grant Nos. 2030508,
1836650, and 1148698.

34

Questions?

35

