Investigating the Strong Nuclear Force with the OSG

Connor Natzke July 9, 2022

There are four fundamental forces in nature

- Gravity Binc
- Electromagnetic Binc
 - Strong Bind
 - Weak Radi

Binds the Solar System together

Binds atoms together

Binds the atomic nucleus together

Radioactive decay

There are four fundamental forces in nature

Electromagnetic Binds atoms together

Strong **Binds the atomic nucleus together**

Weak

Gravity Binds the Solar System together

Radioactive decay

The smaller something is the larger the microscope needs to be

Radiation emitted from atomic nuclei carries information about the structure

Radiation emitted from atomic nuclei carries information about the structure

Radiation emitted from atomic nuclei carries information about the structure

Require energy dependent corrections

Detectors require correction factors found by mapping an energy surface

Map surface via Monte Carlo simulation

41 points required to map surface

- 3 simulations per point
- 1e9 events per simulation
- ~400 CPU hrs per simulation

Detectors require correction factors found by mapping an energy surface

Map surface via Monte Carlo simulation

41 points required to map surface

- 3 simulations per point
- 1e9 events per simulation
- ~400 CPU hrs per simulation

~50,000 CPU hours = 5.7 years!

0.960.94 0.92-0.90 ഫ 0.88 0.86 0.84 0.82 0.80 1000 Energy Ikevy 1000 100 Energy [keV] 0.85-0.80 ~ 0.75 0.70 0.65-0.60 1000 Energy Ikevy 1000 Energy [keV] 100

OSG User School 2019

One simulation of 1e9 events broken up into 1000 simulations of 1e6 events

Building an OSG workflow is an iterative process, and it doesn't need to be perfect!

Submission File Gotta start somewhere

DAGMan Automation is key

Pegasus Proper programming makes life easy

Queued Pegasus

Embrace the laziness

One simulation of 1e9 events broken up into 1000 simulations of 1e6 events

Building an OSG workflow is an iterative process, and it doesn't need to be perfect!

 Submission File
 Gotta start somewhere

DAGMan Automation is key

PegasusProper programming makes life easy

Queued Pegasus Embr

Embrace the laziness

One simulation of 1e9 events broken up into 1000 simulations of 1e6 events

DAGMan handled workflow

Python script created DAG file

Total workflow took ~24 hours

DAGMan was good, but not perfect

Jobs would fail randomly File transfers, bad simulations, etc

Automation reliant on my ability as a programmer

Large memory footprint on submit node > 400 GB

DAGMan was good, but not perfect

Common failure points

Vast majority of wall time ~ 18 hours

Building an OSG workflow is an iterative process, and it doesn't need to be perfect!

Submission File Gotta start somewhere

DAGMan Automation is key

Pegasus

Queued Pegasus

Proper programming makes life easy

Embrace the laziness

Converted workflow to Pegasus for file management, transfers, and error handling

Jobs would fail randomly Retried automatically!

Automation built in File transfers, clean up, simpler inputs, etc

Smaller memory footprint on submit node < 200 GB

Pegasus allowed for a faster and more robust workflow

Pegasus allowed for a faster and more robust workflow

Total workflow takes ~4 hours!

Using the workflow only takes 3 command line calls

vim simulation.ini

./make_input_files.sh

./ggac_surface.py

1	[simulation]
2	z=13
3	<mark>a</mark> =34
4	g1 =1193
5	<mark>g2</mark> =2588
6	r=145

Using the workflow only takes 3 command line calls

vim simulation.ini

./make_input_files.sh

./ggac_surface.py

[simulation]
z=13
a=34
g1=1193
g2 =2588
r=145

Using the workflow only takes 3 command line calls

vim simulation.ini

./make_input_files.sh

./ggac_surface.py

[simulation]
z=13
a=34
g1=1193
g2 =2588
r=145

In large workflows Pegasus can mimic a cyberattack

Image from: https://steemit.com/steemit/@polaleye50/6ja7t8-ddos-protection-the-unique-way-to-protect-your-network-from-the-attack-of-ddos-botnet

Distributed Denial-of-Service Attack (DDoS)

Flood server network interfaces and (potentially) cause crash

The OSG has provided a more than 40x increase in simulation speed

Standard ComputationOSG Workflow1961168 hrs / pt4 hrs / pt

Surface points

Wall time

File management

Manual

Automatic

Building an OSG workflow is an iterative process, and it doesn't need to be perfect!

Submission File Gotta start somewhere

DAGMan Automation is key

Proper programming makes life easy Pegasus

Queued Peaasus

Embrace the laziness

If some automation is good, more must be better!

Automatically submit multiple workflows

Even simpler input file

More can go wrong without warning Elements != Isotopes

1	<pre>z, a, total_events, events_per_si</pre>
2	27, 60, 10e6, 2e5
3	63, 152, 10e6, 2e5

Words of wisdom from a graduate student (Use at your own peril)

Don't be afraid to break things

If you have to do it more than twice, automate it

The answer is *always* in the error logs

The Job Failures Will Continue Mora In Improves

Thank you to everyone who helped develop my workflow!

Tim Cartwright OSG

Lauren Michael DAGMan

Mats Rynge Pegasus

Connor Natzke cnatzke@mines.edu

RIUMF

Access to the OSG has changed how I approach expensive computational problems

Total Wall Hours: 135k hours ~15 years!

Total Jobs: 590,000

Wall Hours

