Leveraging computer vision systems for monitoring animal health and productivity on dairy farms

ARIANA NEGREIRO
PHD STUDENT
ADVISOR: DR. JOAO DOREA

DEPARTMENT OF ANIMAL & DAIRY SCIENCES
UNIVERSITY OF WISCONSIN-MADISON
My Background

Animal scientist
Focus on animal health and management

CHTC allowed me to accelerate my research and perform analyses that would be impossible otherwise.
Outline

My research

Computational implementation
 • computing requirements
 • deployment
 • throughput/time

Using CHTC/HTCondor

Personal and professional impact
• Research applications of machine learning and computer vision for farm management and genetic selection

Sensors:
- Wearable Cameras
- IR Spec.
- RFID
- Sound
- Housing

Animal-Level Information
- Animal Identification
- Animal Behavior
- Body Weight
- BCS/Composition
- Milk Components
- Milk Yield
- Estrus Event
- Feed Intake
- Feed Efficiency
- Disease Risks

Environmental Information
- Weather
- Crop
- Water
- Soil

Tullo et al., 2019
Current methods for monitoring cattle:

- Visual observation
 - Large-scale applications?
 - Subjectivity
- Wearable sensors
- * Computer vision
Benefits of Computer Vision

- Cameras are affordable and easy to install
- Ability to monitor multiple animals at a time
- Images provide a great amount of information
 - Animal location/action
 - Social interaction
 - Weather/season
 - Health/mobility
Research: Cow mouth tracking

- 1,662,417 images
- Cropped for each individual cow (utilizing CHTC)
- 4,008,630 sequential images
- Mask R-CNN

Inferences made on remaining 4,008,245 images
Research: Calf heat stress detection

- 27,704 images
- YOLOv3
- tinyYOLOv3

Training: 297 images
Validation: 128 images

Inferences made on remaining 27,704 images
Research: Calf identification and growth monitoring

- 27 + TB of data
- Current project
- Xception (ongoing analyses)
Implementation

- These analyses utilize complex algorithms
- Large datasets (thousands or millions of images)
- Image data is large (400x600 = 24,000 pixels)
- Image preprocessing
- Computationally demanding to train

- Mask R-CNN
 - 44 million parameters
- YOLOv3
 - 40.5 million parameters
- tinyYOLOv3
 - 8.9 million parameters
- Xception
 - 22.8 million parameters
Neural Network Training

• Multiple neural networks to train independently:

• Different datasets
 • Evaluate which one is the best for training (preprocessing, data collection strategies, etc)
 • Perform multiple experiments (effect of day, lighting, etc)

• Hyperparameter tuning
 • Train using multiple combinations to find the best
 Neural network training: GPUs vs CPUs

Research Implementation CHTC Impact

CPU vs GPU in practice

(CPU performance not well-optimized, a little unfair)

- Intel E5-2620 v3
- Pascal Titan X (no cuDNN)
- Pascal Titan X (cuDNN 5.1)

VGG-16: 66x
VGG-19: 67x
ResNet-18: 71x
ResNet-50: 64x
ResNet-200: 76x

Data from https://github.com/jjohnson/cnn-benchmarks
Using CHTC/HTCondor

• Using since Fall 2021
• > 4,000 computing hours
• Larger projects require dozens of trained neural networks
• Each project contains thousands of images for training, and 100,000s or even millions of images for inference
Using CHTC/HTCondor

- Datasets stored on Staging
- Python environments using Miniconda
 - Compressed environment packs stored on SQUID
- Queue jobs using txt files
- Template folder for each category of project (containing .sub, .sh, python files, etc)
 - Each template expects datasets following a certain format and outputs files/folders following a certain format
Use case: cow mouth detection

Input: Dataset containing images and bounding boxes

- Dataset/
 - Img01.png
 - Img01_bbox.txt
 - Img02.png
 - Img02_bbox.txt
 - Img03.png
 - Img03_bbox.txt

Output: Bounding box predictions on test set

physical measurements
• distance traveled
• acceleration
• velocity

provides insight on feeding behavior, health, and milk production
Use case: calf detection

- Input: Dataset containing images and masks
- Output: Mask predictions on test set
Use case: edge computing

Deploy trained model (trained using CHTC) in edge computing applications to make inferences real-time.
Use case: calf identification

- Collecting images 24/7 following calves the first 2 years of life
- Tracking growth, health, and behavior
- Estimated > 100 TB data to be acquired
CHTC Benefits/Limitations

Pros:

- Potential ability to access data directly from our own servers (access point)
- Checking logs to have an idea of how far into the job (which epoch, for example) the 12/24/72hr limits were reached
- Flexibility to submit jobs to CPUs or GPUs depending on availability and size of job
- The option to have emails sent when jobs are done running

Cons:

- Large datasets can take very long to transfer, especially when working from home using a VPN
Personal & Professional Impact

• Ability to perform data analysis that would be impossible otherwise
 • Advancing knowledge of animal health and behavior

• Experience accessing a remote Linux server

• Exposure using a high-throughput computing system

• Consider data flow and automation within remote server environments

• Cultivated skills that will help me in my future career, opened opportunities to present my research in multiple conferences, and work with a great team!
Thank you!
negreiro@wisc.edu