
Optimizing Your Computing

Christina Koch ckoch5@wisc.edu
Research Computing Facilitator

University of Wisconsin - Madison

OSG User School 2019

Why Are We Here?

2

OSG User School 2019

Why Are We Here?

3

To do SCIENCE!!!

•  A lot of science is best-done
with computing – sometimes,
LOTS of computing

•  Science needs to be
reproducible

•  And, we’d really like science
to happen fast(er)

Getting the most out of  
computing (for research)

4

OSG User School 2019

Computing Types

•  At the beginning of the week, we talked
about two different approaches for
tackling large compute tasks...

5

high-performance (e.g.MPI) high-throughput

OSG User School 2019

Two Strategies

High Throughput
Focus: Workflows with many
small, largely independent
compute tasks
Optimize: throughput, or
time from submission to
overall completion

High Performance
•  Focus: Workflows with

large, highly coupled
tasks

•  Optimize: individual
tasks, software,
communication between
processes

6

OSG User School 2019

Making Good Choices

 How do you choose the best approach?

Is your problem “HTC-able”?

7

OSG User School 2019

Typical HTC Problems

•  batches of similar program runs (>10)
•  “loops” over independent tasks
•  others you might not think of …
- programs/functions that

§ process files that are already separate
§ process columns or rows, separately
§  iterate over a parameter space

- a lot of programs/functions that use multiple
CPUs on the same server
Ultimately: Can you break it up?

8

OSG User School 2019

What is Not HTC?

•  fewer numbers of jobs
•  jobs individually requiring significant

resources
- RAM, Data/Disk, # CPUs, time
(though, “significant” depends on the HTC
compute system you use)

•  restrictive software licensing

9

OSG User School 2019

The Real World

•  However, it’s not just
about finding the right
computing approach to
your problem.

•  These approaches will be
most effective if they’re
running on appropriate
compute systems.

10

OSG User School 2019

The Real World

•  Not all compute systems are created
equal.

•  Two questions to ask:
What resources are available to me?
Which one is the best match for the

kind of computing I want to do?

11

OSG User School 2019

TWO EXAMPLES:  
LOCAL HTC AND OSG

12

OSG User School 2019

CHTC Recommendations

Ideal Jobs Still very
advantageous

Less-so, but maybe

Cpus
(Gpus)

1
(1)

<20
(1)

>20 cpus, using
multiple nodes

Walltime <12 hours*
or checkpointable

<24 hours*
or checkpointable

up to 2 weeks

RAM 1-2GB up to TBs >4TB

Input <100MB up to TBs N/A

Output <4GB up to TBs N/A

Software ‘portable’ anything else that’s
not à

licensed, non-Linux

13

OSG User School 2019

OSG Recommendations

14

OSG User School 2019

WHAT ABOUT YOUR LOCAL
COMPUTE CENTER?

15

OSG User School 2019

Campus Resources

•  Check out your local campus compute system
•  Some considerations:
- Who has access? Are there allocations?
- What kind of system? What is it optimized for?

•  An HPC cluster may not handle lots of jobs well, in
the same way that an HTC system has limited
multicore capabilities - be aware of how a system
matches/doesn’t match your computation strategy.

•  Ask questions! Be a good citizen!
•  If local resources are limited, explore other options.

16

OSG User School 2019

Beyond Your Campus

•  Open Science Grid!
- This afternoon, Tim will talk about ways to

access OSG after the school is over

•  Other grids
- European Grid Infrastructure
- Other national and regional grids
- Commercial cloud systems

17

OSG User School 2019

The Payoff

•  HTC is, beyond everything, scalable
-  If you can run 10 jobs, you can run 10,000,

maybe even 10 million
•  Worth pursuing the right kind of

resources (if you can) for the right kind
of problem.

18

tim
e

n processors

Getting the Most out of HTC

19

OSG User School 2019

RUN AS MANY JOBS AS
POSSIBLE ON AS MANY
COMPUTERS AS POSSIBLE

The HTC Goal:

20

OSG User School 2019

Key HTC Tactics

21

1.  Increase Overall Throughput
Optimize for total work, not individual jobs

2.  Utilize Resources Efficiently!
3.  Bring Dependencies With You
4.  Scale Gradually, Testing Generously
5.  Automate As Many Steps As Possible

OSG User School 2019

Throughput, revisited

•  In HTC, we optimize throughput: time
from submission to overall completion

•  Instead of making individual jobs as fast
as possible, optimize how long it takes
for all jobs to finish.

•  We do this by breaking large processes
into smaller pieces (to have more
simultaneous processing power)

22

OSG User School 2019

Breaking Up

•  Break work into parallel (separate) jobs
- reduced job requirements = more matches
- not always easy or possible

•  Strategies
- break HTC-able steps out of a single program
- break up loops
- break up input

•  Use self-checkpointing if jobs are too long
•  Consider grouping tasks if jobs are short!

23

OSG User School 2019

Self-Checkpointing

Solution for long jobs and “shish-kebabs”
1.  Changes to your code
-  Periodically save information about

progress to a new file (every hour?)
-  At the beginning of script:

§  If progress file exists, read it and start from
where the program (or script) left off

§  Otherwise, start from the beginning

2.  Change to submit file:
when_to_transfer_output	=	ON_EXIT_OR_EVICT	

24

OSG User School 2019

Solutions for Larger Files

•  File manipulations
- split input files to send minimal data with

each job
- filter input and output files to transfer only

essential data
- use compression/decompression

•  Follow file delivery methods from
yesterday for files that are still “large”

25

OSG User School 2019

Key HTC Tactics

26

1.  Increase Overall Throughput
2.  Utilize Resources Efficiently!

Jobs will match to more resources
3.  Bring Dependencies With You
4.  Scale Gradually, Testing Generously
5.  Automate As Many Steps As Possible

OSG User School 2019

Know and Optimize Job Use of
Resources

•  CPUs (“1” is best for matching; essential for OSG)
§  restrict, if necessary/possible
§  software that uses all available CPUs is BAD!

•  CPU Time
> ~5 min, < ~1 day; Ideal: 1-10 hours

•  RAM (not always easily modified)

•  Disk per-job (execute) and in-total (submit)

•  Network Bandwidth
§ minimize transfer: filter/trim/delete, compress

27

OSG User School 2019

Use the Job Log

001	(2576205.000.000)	06/07	11:57:57	Job	executing	on	host:	
<128.104.101.248:9618>	
005	(2576205.000.000)	06/07	14:12:55	Job	terminated.	
								(1)	Normal	termination	(return	value	0)	
																Usr	0	00:00:00,	Sys	0	00:00:00		-		Run	Remote	Usage	
																Usr	0	00:00:00,	Sys	0	00:00:00		-		Run	Local	Usage	
																Usr	0	00:00:00,	Sys	0	00:00:00		-		Total	Remote	Usage	
																Usr	0	00:00:00,	Sys	0	00:00:00		-		Total	Local	Usage	
								5		-		Run	Bytes	Sent	By	Job	
								104857640		-		Run	Bytes	Received	By	Job	
								5		-		Total	Bytes	Sent	By	Job	
								104857640		-		Total	Bytes	Received	By	Job	
								Partitionable	Resources	:				Usage		Request	Allocated	
											Cpus																	:																	1									1	
											Disk	(KB)												:			122358			125000		13869733	
											Memory	(MB)										:							30						100							100	

28

OSG User School 2019

Key HTC Tactics

29

1.  Increase Overall Throughput
2.  Utilize Resources Efficiently!
3.  Bring Dependencies With You

Jobs can run anywhere*
4.  Scale Gradually, Testing Generously
5.  Automate As Many Steps As Possible

*almost

OSG User School 2019

Bring What with You?

- Parameters and
random numbers:
generate and record
ahead of time (for
reproducibility)

•  What else?

30

•  Software (covered Wednesday)
•  Data and other input files

OSG User School 2019

Wrapper Scripts Recap

31

•  Before task execution
-  transfer/prepare files and directories
-  setup/configure software environment and other

dependencies
•  Task execution
-  prepare complex commands and arguments
-  batch together many ‘small’ tasks

•  After task execution
-  filter/combine/compress files and directories
-  check for and report on errors

OSG User School 2019

Key HTC Tactics

32

1.  Increase Overall Throughput
2.  Utilize Resources Efficiently!
3.  Bring Dependencies With You
4.  Scale Gradually, Testing Generously

Saves you time in the long run!
5.  Automate Multiple Steps

OSG User School 2019

Testing, Testing, Testing!

•  Will be a major focus of our exercises
today.

•  Allows you to optimize resource use (see
HTC tactic #2), job length (tactic #1)

•  Just because it worked for 10 jobs,
doesn’t mean it will work perfectly for
10,000 jobs (scaling issues)
- Data transfer (in and out)
- Discover site-specific problems

33

OSG User School 2019

Why test? Imagine if:

•  You are using a new
scientific instrument.
Would you run 100
samples without
ever running a test
(or a few tests)?

34

•  Your job accidentally creates a 3GB core dump
file because the code is corrupted. What happens
if you submit 1,000 jobs with this issue?

OSG User School 2019

Testing, Testing, One...

•  Get one job working
- Work out software

issues, data transfer
patterns, etc.
- Make subsequent

memory/disk
requests based on
results from this job
-  How long does the

job run?

35

OSG User School 2019

...Two...

•  Run a medium/small scale test(s) (10-100
jobs)
-  Check memory/disk requests when complete. Are they

accurate? If not, change them.
-  Do some percentage of jobs fail? If so, can you figure

out why? How will you find/handle failures at a larger
scale?
- Would it make sense to submit more, smaller jobs or

fewer, longer jobs?
-  How much data is being generated? Do you have

space on the submit server to store the results of the
full-scale run?

36

OSG User School 2019

...Three!

•  If you make significant
changes in any of the
previous testing steps (or
make any other changes
to your workflow - new
code, new data, new
version of your software)
-- do another quick test.

•  Once you’ve done a small
and medium test, scale up
to the full submission.

37

OSG User School 2019

Introducing the exercises

•  Our exercise today will involve developing a
workflow (series of sequential pieces)

•  What you need to know for the first two
exercises:
-  Identify the component pieces (job

submissions) of the workflow and the shape of
the overall workflow.
- Test/optimize the pieces, as described in the

previous few slides

38

OSG User School 2019

Questions?

•  Now: “Joe’s Workflow”
- Exercise 1.1 -- Understand and plan (no jobs)
- Exercise 1.2 -- Testing jobs
- Work in groups of 2-3
- Read carefully!

•  Later:
- Lecture: Optimizing Workflows
- Exercises 2.1, 2.2

39

