
Backpacking with Code:
Software Portability for DHTC

Christina Koch (ckoch5@wisc.edu)
Research Computing Facilitator

University of Wisconsin - Madison

OSG User School 2016

Goals for this session
•  Understand the basics of...
-  how software works
-  where software is installed
-  how software is accessed and run

•  ...and the implications for Distributed High
Throughput Computing (DHTC)

•  Describe what it means to make software “portable”
•  Learn about and use two software portability techniques:
-  Build portable code
-  Use wrapper scripts

2

Motivation

running a piece of software is like cooking a
meal in a kitchen

3

OSG User School 2016

The Problem

Running
software on
your own
computer =
cooking in your
own kitchen

4

OSG User School 2016

The Problem
In your own kitchen:
•  You have all the pots and pans you need
•  You know where everything is
•  You have access to all the cupboards
On your own computer:
•  The software is installed, you know where it

is, and you can access it.

5

OSG User School 2016

The Problem

6

Running on a shared computer =
cooking in someone else’s kitchen.

OSG User School 2016

The Problem
In someone else’s kitchen:
•  You are guaranteed some things…
•  …but others may be missing
•  You don’t know where everything is
•  Some of the cupboards are locked
On a shared computer:
•  Your software may be missing, un-findable, or

inaccessible.

7

OSG User School 2016

The Solution
•  Think like a

backpacker
•  Take your software

with you
-  Install anywhere
-  Run anywhere

•  This is called making
software portable

8

OSG User School 2016

Software Basics

•  How do we make software portable?
•  First we have to understand:
- What software is and how it works
- Where software lives
- How we run it

9

OSG User School 2016

How Software Works
•  A software program can be thought of as a list of

instructions or tasks that can be run on an computer
•  A launched program that is running on your computer is

managed by your computer’s operating system (OS)
•  The program may make requests (access this network via

wireless, save to disk, use another processor) that are
mediated by the OS

•  A single program may also depend on other programs
besides the OS

10

OSG User School 2016

How Software Works*

11

Program
(software, code,
executable, binary)

Running Program
(process, instance)

Hardware
(processors,
memory, disk)

Operating
System runs

own
tasks makes

requests

launches to

translates
program’s
request

monitors
running
programs depends on

*Not to scale

OSG User School 2016

How Software Works

Implications for DHTC:
•  Software must be able to run on target

operating system (usually Linux)
•  Request specific OS as job requirement
•  Know what else your software depends

on

12

OSG User School 2016

Location, location, location

•  Where can software be installed?

13

 /

bin usr lib programs home

fred

wilma bin local

system locations
local locations

OSG User School 2016

Location, location, location

•  Who can install the software?

14

 /

bin usr lib programs home

fred

wilma bin local

Usually requires
administrative privileges Owner of the

directory

OSG User School 2016

Location, location, location

•  Who can access the software?

15

 /

bin usr lib programs home

fred

wilma bin local

Anyone on the system The local user can
control who has access

OSG User School 2016

Location, location, location

Implications for DHTC:
•  Software MUST be able to install to a

local location
•  Software must be installable without

administrative privileges

16

OSG User School 2016

Command Line
Instead of graphic interface… command line

17

•  All DHTC jobs must use software that can be run
from the command line.

•  The command can be used either in a script or as
the job’s executable/arguments

OSG User School 2016

Location and Running Software

•  To run a program on the command line,
your computer needs to know where the
program is located in your computer’s
file system.

18

$ ls
$ python
$ ~/wrapper.sh

How does the command
line know what `ls` is?
Where is python installed?

OSG User School 2016

Option 1: Use a Path

19

[~/Code]$ pwd
/Users/alice/Code
[~/Code]$ ls
mypy/ R/ sandbox/

[~]$ /Users/alice/Code/mypy/bin/python --version
Python 2.7.7

•  Give the exact location of your program via a
relative or absolute path:

[~/Code]$ mypy/bin/python --version
Python 2.7.7

OSG User School 2016

Option 2: Use “the” PATH
•  The PATH is a list of locations (filesystem

directories) to look for programs:

•  For example, common command line programs
like ls and pwd are in a system location called
bin/, which is

 included in the PATH.

20

$ echo $PATH
/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin

$ which pwd
/bin/pwd
$ which ls
/bin/ls

OSG User School 2016

Option 2: Use “the” PATH
•  You can add directories to the PATH, which allows

the command line to find the command directly:

21

$ echo $PATH
/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin
$ which python
/usr/bin/python

$ export PATH=/Users/alice/Code/mypy/bin:$PATH
$ echo $PATH
/Users/alice/Code/mypy/bin:/usr/local/bin:/usr/bin:/bin:/
usr/sbin:/sbin
$ which python
/Users/alice/Code/mypy/bin/python

OSG User School 2016

Command line

Implications for DHTC:
•  Software must have ability to be run from

the command line
•  Multiple commands are okay, as long as

they can be executed in order within a job
•  There are different ways to “find” your

software on the command line: relative
path, absolute path, and PATH variable

22

OSG User School 2016

Portability requirements
Based on the previous slides, we now know that in order to
make software portable for DHTC, the software:
•  Must work on target operating system (probably Linux)
•  Must be able to run and install without administrative

privileges
•  Must be accessible to your job (placed or installed in

job’s working directory)
•  Must be able to run from the command line, without any

interactive input from you

23

OSG User School 2016

Returning to our scenario:

In a DHTC situation, we are:
•  Using someone else’s computer
- Software may not be installed
- The wrong version may be installed
- We can’t find/run the installed software

Therefore:
•  We need to bring along and install/run

software ourselves
24

OSG User School 2016

Portability methods

There are two primary methods to make
code portable:
•  Use a single compiled binary
- Typically for code written in C, C++ and

Fortran, or downloadable programs
•  Use a wrapper script + “install” per job
- Can’t be compiled into a single binary
-  Interpreted languages (e.g. Python, R)

25

OSG User School 2016

USE A SINGLE COMPILED
BINARY

Method 1

OSG User School 2016

What is Compilation?

27

Source code Binary

compiled + linked

run on

libraries compiler
and OS

uses

OSG User School 2016

Static Linking

28

Source code Static binary

compiled + static linking

run anywhere

libraries compiler
and OS

OSG User School 2016

Compilation (command line)

29

OSG User School 2016

Single Binary Workflow

30

Option 1

Static binary

Submit server
Execute server

compile

download
Option 2

OSG User School 2016

USE WRAPPER SCRIPTS

Method 2

OSG User School 2016

Set up software with every job
•  Good for software that:
-  Can’t be statically compiled / compiled to one file
-  Uses interpreted languages (Matlab, Python, R)
-  Any software with instructions for local installation

•  Method: write a wrapper script
-  Contains a list of commands to execute
-  Typically written in bash or simple perl/python (usually

common across operating systems/versions)

32

OSG User School 2016

Wrapper scripts
•  Set up software in the working directory
-  Unpack pre-built installation OR
-  Just use normal compiled code

•  Run software
•  Besides software: manage data/files in the

working directory
- Move or rename output
-  Delete installation files before job completion

33

OSG User School 2016

Wrapper script workflow

34

Submit server
Execute server

set up run
wrapper script

source code,
compiled code or
pre-built install

set up run

set up run

OSG User School 2016

When to pre-build?
Pre-built installation
(recommended)
•  Install once, use in

multiple jobs
•  Faster than installing from

source code within the job
•  Jobs must run on a

computer similar to where
the program was built

Install with every job
(variable results)
•  Computers must have

appropriate tools
(compilers, libraries) for
software to install

•  Can run on multiple
systems, if these
requirements are met

•  Longer set-up time

35

OSG User School 2016

Preparing your code
•  Where do you compile/pre-build code? Test your

wrapper script?
•  Guiding question: how computationally intensive is

the task?
-  Computationally intensive (takes more than a few

minutes, as a rule of thumb)
§  Run as interactive job, on a private computer/server, or with a

queued job

-  Computationally light (runs in few minutes or less)
§  Run on submit server (or above options, if desired)

36

OSG User School 2016

Exercises

•  Software is a compiled binary
- Exercise 3.1: statically compile code and run

(C code)
- Exercise 3.2: download and run pre-compiled

binary (BLAST)

37

OSG User School 2016

Exercises

•  Introduction to using wrapper scripts
- Exercise 3.3: use a wrapper script to run

previously downloaded software (BLAST)
•  Portable installation and wrapper scripts
- Exercise 3.4: create a pre-built software

installation, and write a wrapper script to
unpack and run software (OpenBUGS)

38

OSG User School 2016

Exercises

•  Exercise 3.5 (optional)
- Using arguments with wrapper scripts

39

OSG User School 2016

Questions?

•  Now: Hands-on Exercises
- 1:45-3:00pm

•  Next:
- 3:00 - 3:15pm: Break
- 3:15 - 5:00pm: Interpreted languages

40

