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Goals for this session 
•  Understand the basics of... 
-  how software works 
-  where software is installed 
-  how software is accessed and run 

•  ...and the implications for Distributed High 
Throughput Computing (DHTC) 

•  Describe what  it means to make software “portable” 
•  Learn about and use two software portability techniques: 
-  Build portable code 
-  Use wrapper scripts 
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Motivation 

running a piece of software is like cooking a 
meal in a kitchen 
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The Problem 

Running 
software on 
your own 
computer = 
cooking in your 
own kitchen 
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The Problem 
In your own kitchen:  
•  You have all the pots and pans you need 
•  You know where everything is 
•  You have access to all the cupboards 
On your own computer:  
•  The software is installed, you know where it 

is, and you can access it. 
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The Problem 
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Running on a shared computer = 
cooking in someone else’s kitchen. 
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The Problem 
In someone else’s kitchen:  
•  You are guaranteed some things… 
•  …but others may be missing 
•  You don’t know where everything is 
•  Some of the cupboards are locked  
On a shared computer:  
•  Your software may be missing, un-findable, or 

inaccessible. 
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The Solution 
•  Think like a 

backpacker  
•  Take your software 

with you 
-  Install anywhere 
-  Run anywhere 

•  This is called making 
software portable 
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Software Basics 

•  How do we make software portable?   
•  First we have to understand:  
- What software is and how it works 
- Where software lives 
- How we run it 
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How Software Works 
•  A software program can be thought of as a list of 

instructions or tasks that can be run on an computer 
•  A launched program that is running on your computer is 

managed by your computer’s operating system (OS) 
•  The program may make requests (access this network via 

wireless, save to disk, use another processor) that are 
mediated by the OS 

•  A single program may also depend on other programs 
besides the OS 

10 



OSG User School 2016 

How Software Works* 
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Program 
(software, code, 
executable, binary) 

Running Program 
(process, instance) 

Hardware 
(processors, 
memory, disk) 

Operating 
System runs 

own 
tasks makes 

requests 

launches to 

translates 
program’s 
request 

monitors 
running 
programs depends on 

*Not to scale 
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How Software Works 

Implications for DHTC: 
•  Software must be able to run on target 

operating system (usually Linux) 
•  Request specific OS as job requirement 
•  Know what else your software depends 

on 
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Location, location, location 

•  Where can software be installed? 
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 / 

bin usr lib programs home 

fred
 

wilma bin local 

system locations 
local locations 
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Location, location, location 

•  Who can install the software?   
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 / 

bin usr lib programs home 

fred
 

wilma bin local 

Usually requires  
administrative privileges Owner of the  

directory 
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Location, location, location 

•  Who can access the software?   
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 / 

bin usr lib programs home 

fred
 

wilma bin local 

Anyone on the system The local user can 
control who has access 
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Location, location, location 

Implications for DHTC: 
•  Software MUST be able to install to a 

local location 
•  Software must be installable without 

administrative privileges 
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Command Line 
Instead of graphic interface… command line 
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•  All DHTC jobs must use software that can be run 
from the command line.    

•  The command can be used either in a script or as 
the job’s executable/arguments 
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Location and Running Software 

•  To run a program on the command line, 
your computer needs to know where the 
program is located in your computer’s 
file system.  
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$ ls
$ python
$ ~/wrapper.sh

How does the command 
line know what `ls` is?  
Where is python installed? 
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Option 1: Use a Path 

19 

[~/Code]$ pwd
/Users/alice/Code
[~/Code]$ ls
mypy/ R/ sandbox/

[~]$ /Users/alice/Code/mypy/bin/python --version
Python 2.7.7

•  Give the exact location of your program via a 
relative or absolute path:  

[~/Code]$ mypy/bin/python --version
Python 2.7.7
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Option 2: Use “the” PATH 
•  The PATH is a list of locations (filesystem 

directories) to look for programs:  

•  For example, common command line programs 
like ls and pwd are in a system location called 
bin/, which is  

    included in the PATH. 
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$ echo $PATH
/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin

$ which pwd
/bin/pwd
$ which ls
/bin/ls
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Option 2: Use “the” PATH 
•  You can add directories to the PATH, which allows 

the command line to find the command directly:  
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$ echo $PATH
/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin
$ which python
/usr/bin/python

$ export PATH=/Users/alice/Code/mypy/bin:$PATH
$ echo $PATH
/Users/alice/Code/mypy/bin:/usr/local/bin:/usr/bin:/bin:/
usr/sbin:/sbin
$ which python
/Users/alice/Code/mypy/bin/python
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Command line 

Implications for DHTC: 
•  Software must have ability to be run from 

the command line 
•  Multiple commands are okay, as long as 

they can be executed in order within a job  
•  There are different ways to “find” your 

software on the command line: relative 
path, absolute path, and PATH variable 
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Portability requirements 
Based on the previous slides, we now know that in order to 
make software portable for DHTC, the software:  
•  Must work on target operating system (probably Linux) 
•  Must be able to run and install without administrative 

privileges 
•  Must be accessible to your job (placed or installed in 

job’s working directory) 
•  Must be able to run from the command line, without any 

interactive input from you 
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Returning to our scenario: 

In a DHTC situation, we are:  
•  Using someone else’s computer 
- Software may not be installed 
- The wrong version may be installed 
- We can’t find/run the installed software 

Therefore: 
•  We need to bring along and install/run 

software ourselves 
24 
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Portability methods 

There are two primary methods to make 
code portable:  
•  Use a single compiled binary 
- Typically for code written in C, C++ and 

Fortran, or downloadable programs 
•  Use a wrapper script + “install” per job 
- Can’t be compiled into a single binary 
-  Interpreted languages (e.g. Python, R) 
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USE A SINGLE COMPILED 
BINARY 

Method 1 
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What is Compilation? 
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Source code Binary 

compiled + linked 

run on 

libraries compiler 
and OS 

uses 
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Static Linking 
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Source code Static binary 

compiled + static linking 

run anywhere 

libraries compiler 
and OS 
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Compilation (command line) 
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Single Binary Workflow 
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Option 1 

Static binary 

Submit server 
Execute server 

compile 

download 
Option 2 
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USE WRAPPER SCRIPTS 

Method 2 
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Set up software with every job 
•  Good for software that:  
-  Can’t be statically compiled / compiled to one file 
-  Uses interpreted languages (Matlab, Python, R) 
-  Any software with instructions for local installation 

•  Method: write a wrapper script 
-  Contains a list of commands to execute 
-  Typically written in bash or simple perl/python (usually 

common across operating systems/versions) 
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Wrapper scripts 
•  Set up software in the working directory 
-  Unpack pre-built installation OR 
-  Just use normal compiled code 

•  Run software 
•  Besides software: manage data/files in the 

working directory 
- Move or rename output 
-  Delete installation files before job completion 
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Wrapper script workflow 
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Submit server 
Execute server 

set up      run 
wrapper script 

source code, 
compiled code or 
pre-built install 

set up     run 

set up    run 
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When to pre-build? 
Pre-built installation 
(recommended) 
•  Install once, use in 

multiple jobs 
•  Faster than installing from 

source code within the job 
•  Jobs must run on a 

computer similar to where 
the program was built 

Install with every job 
(variable results) 
•  Computers must have 

appropriate tools 
(compilers, libraries) for 
software to install 

•  Can run on multiple 
systems, if these 
requirements are met 

•  Longer set-up time 
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Preparing your code 
•  Where do you compile/pre-build code? Test your 

wrapper script? 
•  Guiding question: how computationally intensive is 

the task?    
-  Computationally intensive (takes more than a few 

minutes, as a rule of thumb) 
§  Run as interactive job, on a private computer/server, or with a 

queued job 

-  Computationally light (runs in few minutes or less) 
§  Run on submit server (or above options, if desired) 
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Exercises 

•  Software is a compiled binary 
- Exercise 3.1: statically compile code and run 

(C code) 
- Exercise 3.2: download and run pre-compiled 

binary (BLAST) 
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Exercises 

•  Introduction to using wrapper scripts 
- Exercise 3.3: use a wrapper script to run 

previously downloaded software (BLAST) 
•  Portable installation and wrapper scripts 
- Exercise 3.4: create a pre-built software 

installation, and write a wrapper script to 
unpack and run software (OpenBUGS) 
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Exercises 

•  Exercise 3.5 (optional) 
- Using arguments with wrapper scripts 
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Questions? 

•  Now: Hands-on Exercises 
- 1:45-3:00pm 

•  Next: 
- 3:00 - 3:15pm: Break 
- 3:15 - 5:00pm: Interpreted languages 
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