
Introduction to High Throughput
Computing and HTCondor

Monday AM, Lecture 1
Lauren Michael

OSG Summer School 2019

Overview – 1.1

• What is high throughput computing (HTC) ?
• How does the HTCondor job scheduler work?
• How do you run jobs on an HTCondor

compute system?

2

OSG Summer School 2019

Keys to Success
• Work hard
• Ask questions!

…during lectures
...during exercises
...during breaks
...during meals

• If we do not know an answer, we will try to
find the person who does.

3

OSG Summer School 2019

Serial Computing

• Serial execution, running on one processor
(CPU core) at a time

• Overall compute time grows significantly as
individual tasks get more complicated (long)
or if the number of tasks increases

• How can you speed things up?

tim
e

What many
programs look like:

4

OSG Summer School 2019

High Throughput Computing (HTC)

• Parallelize!
• Independent tasks run on different cores

tim
e

n cores

5

OSG Summer School 2019

High Performance Computing (HPC)

tim
e

n cores

…

…

…
6

OSG Summer School 2019

High Performance Computing (HPC)

• Benefits greatly from:
- CPU speed + homogeneity
- Shared filesystems
- Fast, expensive networking (e.g.

Infiniband) and servers co-located
• Scheduling: Must wait until all

processors are available, at the same
time and for the full duration

• Requires special programming (MP/MPI)
• What happens if one core or server

fails or runs slower than the others?

7

tim
e

n cores

…
…

…

OSG Summer School 2019

High Throughput Computing (HTC)

• Scheduling: only need 1 CPU core for each (shorter wait)
• Easier recovery from failure
• No special programming required
• Number of concurrently running jobs is more important
• CPU speed and homogeneity are less important

8

tim
e
n cores

OSG Summer School 2019

HPC vs HTC: An Analogy

9

OSG Summer School 2019

HPC vs HTC: An Analogy

10

OSG Summer School 2019

High Throughput vs High Performance

HTC
• Focus: Large workflows of

numerous, relatively
small, and independent
compute tasks

• More important: maximized
number of running tasks

• Less important: CPU speed,
homogeneity

HPC
• Focus: Large workflows of

highly-interdependent
sub-tasks

• More important: persistent
access to the fastest
cores, CPU homogeneity,
special coding, shared
filesystems, fast networks

11

OSG Summer School 2019

HTC Examples

12

text analysis (most genomics …) parameter sweeps

statistical model optimization
(MCMC, numerical methods, etc.)

multi-start simulations

multi-image and
multi-sample analysis

OSG Summer School 2019

Is your research HTC-able?
• Can it be broken into relatively numerous,

independent pieces?

• Think about your research! Can you think of a
good high throughput candidate task? Talk to
your neighbor!

13

OSG Summer School 2019

Example Challenge

You need to process 48 brain images for each of 168
patients. Each image takes ~1 hour of compute time.

168 patients x 48 images = ~8000 tasks = ~8000 hrs

Conference is next week.
14

OSG Summer School 2019

Distributed Computing

• Use many computers, each running one
instance of our program

• Example:
- 1 laptop (1 core) => 4,000 hours = ~½ year
- 1 server (~20 cores) => 500 hours = ~3 weeks
- 1 large job (400 cores) => 20 hours = ~1 day
- A whole cluster (8,000 cores) = ~8 hours

15

OSG Summer School 2019

Break Up to Scale Up
• Computing tasks that are easy to break

up are easy to scale up.

• To truly grow your computing
capabilities, you also need a system
appropriate for your computing task!

16

OSG Summer School 2019

What computing resources are available?

• A single computer?
• A local cluster?

- Consider: What kind of cluster is it? Typical clusters tuned
for HPC (large MPI) jobs typically may not be best for HTC
workflows! Do you need even more than that?

• Open Science Grid (OSG)
• Other

- European Grid Infrastructure
- Other national and regional grids
- Commercial cloud systems (e.g. HTCondor on Amazon)

17

OSG Summer School 2019

Example Local Cluster
• UW-Madison’s Center for

High Throughput
Computing (CHTC)

• Recent CPU hours:
~130 million hrs/year (~15k cores)
~10,000 per user, per day

(~400 cores in use)

18

CHTC Pool
single-core

multi-core

high-memory

GPUs MPI
submit
server

OSG Summer School 2019

Open Science Grid
• HTC for Everyone

- ~100 contributors
- Past year:

§ >420 million jobs
§ >1.5 billion CPU hours
§ >200 petabytes transferred

• Can submit jobs locally, they backfill across the country
- interrupted at any time (but not too frequent)

• http://www.opensciencegrid.org/
19

OSG Summer School 2019

HTCONDOR

20

OSG Summer School 2019

HTCondor History and Status
• History

- Started in 1988 as a “cycle scavenger”

• Today

- Developed within the CHTC team by professional developers

- Used all over the world, by:

§ Dreamworks, Boeing, SpaceX, investment firms, …
§ Campuses, national labs, Einstein/Folding@Home
§ The Open Science Grid!!

• Miron Livny, CHTC Director and HTCondor PI

- Professor, UW-Madison Computer Sciences

21

OSG Summer School 2019

HTCondor -- How It Works
• Submit tasks to a queue (on a submit server)
• HTCondor schedules them to run on

computers (execute server)

submit point
execute

execute

execute

22

OSG Summer School 2019

Terminology: Job
• Job: An independently-scheduled unit of computing

work
• Three main pieces:

Executable: the script or program to run
Input: any options (arguments) and/or file-based information
Output: any files or screen information produced by the
executable

• In order to run many jobs, executable must run on the
command-line without any graphical input from the user

23

OSG Summer School 2019

Terminology: Machine, Slot
• Machine

- A whole computer (desktop or server)
- Has multiple processors (CPU cores), some amount of memory,

and some amount of file space (disk)

• Slot
- an assignable unit of a machine (i.e. 1 job per slot)
- most often, corresponds to one core with some memory and disk
- a typical machine may have 4-40 slots

• HTCondor can break up and create new slots, dynamically, as
resources become available from completed jobs

24

OSG Summer School 2019

Job Matching
• On a regular basis, the central manager reviews Job

and Machine attributes and matches jobs to Slots.

submit execute

execute

execute

central manager

OSG Summer School 2019

BASIC JOB SUBMISSION

26

OSG Summer School 2019

Job Example
• program called “compare_states” (executable), which

compares two data files (input) and produces a single
output file.

27

wi.dat

compare_
states

us.dat

wi.dat.out

$ compare_states wi.dat us.dat wi.dat.out

OSG Summer School 2019

Job Translation
• Submit file: communicates everything

about your job(s) to HTCondor
executable = compare_states
arguments = wi.dat us.dat wi.dat.out

transfer_input_files = us.dat, wi.dat

log = job.log
output = job.out
error = job.err

request_cpus = 1
request_disk = 20MB
request_memory = 20MB

queue 1

28

OSG Summer School 2019

executable = compare_states
arguments = wi.dat us.dat wi.dat.out

transfer_input_files = us.dat, wi.dat

log = job.log
output = job.out
error = job.err

request_cpus = 1
request_disk = 20MB
request_memory = 20MB

queue 1

Basic Submit File

29

OSG Summer School 2019

executable = compare_states
arguments = wi.dat us.dat wi.dat.out

transfer_input_files = us.dat, wi.dat

log = job.log
output = job.out
error = job.err

request_cpus = 1
request_disk = 20MB
request_memory = 20MB

queue 1

Basic Submit File
• List your executable

and any arguments it
takes

• Arguments are any
options passed to the
executable from the
command line

compare_
states

$ compare_states wi.dat us.dat wi.dat.out

30

OSG Summer School 2019

executable = compare_states
arguments = wi.dat us.dat wi.dat.out

transfer_input_files = us.dat, wi.dat

log = job.log
output = job.out
error = job.err

request_cpus = 1
request_disk = 20MB
request_memory = 20MB

queue 1

Basic Submit File
• Comma separated list

of input files to
transfer to the slot

wi.dat

us.dat

31

OSG Summer School 2019

Basic Submit File
• HTCondor will transfer

back all new and
changed files (output)
from the job,
automatically.

executable = compare_states
arguments = wi.dat us.dat wi.dat.out

transfer_input_files = us.dat, wi.dat

log = job.log
output = job.out
error = job.err

request_cpus = 1
request_disk = 20MB
request_memory = 20MB

queue 1

wi.dat.out

32

OSG Summer School 2019

Basic Submit File
• log: file created by

HTCondor to track job
progress
- Explored in exercises!

• output/error:
captures stdout and stderr
from your program (what
would otherwise be printed
to the terminal)

executable = compare_states
arguments = wi.dat us.dat wi.dat.out

transfer_input_files = us.dat, wi.dat

log = job.log
output = job.out
error = job.err

request_cpus = 1
request_disk = 20MB
request_memory = 20MB

queue 1

33

OSG Summer School 2019

Basic Submit File
• request the resources

your job needs.
- More on this later!

• queue: keyword
indicating “create 1 job”

executable = compare_states
arguments = wi.dat us.dat wi.dat.out

transfer_input_files = us.dat, wi.dat

log = job.log
output = job.out
error = job.err

request_cpus = 1
request_disk = 20MB
request_memory = 20MB

queue 1

34

OSG Summer School 2019

SUBMITTING AND
MONITORING

35

OSG Summer School 2019

Submitting and Monitoring
• To submit a job/jobs: condor_submit submit_file

• To monitor submitted jobs: condor_q

$ condor_submit job.submit
Submitting job(s).
1 job(s) submitted to cluster 128.

$ condor_q
-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?... @ 05/01/17
10:35:54
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS
alice CMD: compare_states 5/9 11:05 _ _ 1 1 128.0

1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended

HTCondor Manual: condor_submit
HTCondor Manual: condor_q 36

http://research.cs.wisc.edu/htcondor/manual/v8.5/condor_submit.html
http://research.cs.wisc.edu/htcondor/manual/v8.5/condor_q.html

OSG Summer School 2019

More about condor_q
• By default, condor_q shows your jobs only and batches

jobs that were submitted together:

• Limit condor_q by username, ClusterId or full
JobId, (denoted [U/C/J] in following slides).

$ condor_q
-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?... @ 05/01/17
10:35:54
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS
alice CMD: compare_states 5/9 11:05 _ _ 1 1 128.0

1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended

JobId = ClusterId .ProcId

37

OSG Summer School 2019

More about condor_q
• To see individual job details, use:
condor_q –nobatch

• We will use the -nobatch option in the following slides
to see extra detail about what is happening with a job

$ condor_q -nobatch
-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
128.0 alice 5/9 11:09 0+00:00:00 I 0 0.0 compare_states

1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended

38

OSG Summer School 2019

Job Idle

(submit_dir)/
job.submit
compare_states
wi.dat
us.dat
job.log
job.out
job.err

$ condor_q -nobatch
-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

128.0 alice 5/9 11:09 0+00:00:00 I 0 0.0 compare_states wi.dat us.dat

1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended

Submit Node

39

OSG Summer School 2019

Job Starts

compare_states
wi.dat
us.dat

$ condor_q -nobatch
-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

128.0 alice 5/9 11:09 0+00:00:00 < 0 0.0 compare_states wi.dat us.dat

1 jobs; 0 completed, 0 removed, 0 idle, 1 running, 0 held, 0 suspended

(execute_dir)/

40

(submit_dir)/
job.submit
compare_states
wi.dat
us.dat
job.log
job.out
job.err

Submit Node Execute Node

OSG Summer School 2019

Job Running
$ condor_q -nobatch
-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

128.0 alice 5/9 11:09 0+00:01:08 R 0 0.0 compare_states wi.dat us.dat

1 jobs; 0 completed, 0 removed, 0 idle, 1 running, 0 held, 0 suspended

(execute_dir)/
compare_states
wi.dat
us.dat
stderr
stdout
wi.dat.out

41

(submit_dir)/
job.submit
compare_states
wi.dat
us.dat
job.log
job.out
job.err

Submit Node Execute Node

OSG Summer School 2019

Job Completes

stderr
stdout

wi.dat.out

$ condor_q -nobatch
-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

128 alice 5/9 11:09 0+00:02:02 > 0 0.0 compare_states wi.dat us.dat

1 jobs; 0 completed, 0 removed, 0 idle, 1 running, 0 held, 0 suspended

42

(execute_dir)/
compare_states
wi.dat
us.dat
stderr
stdout
wi.dat.out

(submit_dir)/
job.submit
compare_states
wi.dat
us.dat
job.log
job.out
job.err

Submit Node Execute Node

OSG Summer School 2019

Job Completes (cont.)
$ condor_q -nobatch

-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

0 jobs; 0 completed, 0 removed, 0 idle, 0 running, 0 held, 0 suspended

43

(submit_dir)/
job.submit
compare_states
wi.dat
us.dat
job.log
job.out
job.err
wi.dat.out

Submit Node

OSG Summer School 2019

YOUR TURN!

44

CHTC Pool
single-core

multi-core

high-memory

GPUs MPI
submit
server

OSG Summer School 2019

Thoughts on Exercises
• Copy-and-paste is quick, but you WILL learn more by

typing out commands (first) submit file contents

• Exercises 1.1-1.3 are most important to finish THIS

time (see 1.6 if you need to remove jobs)!

• If you do not finish, that’s OK – You can make up work later or

during evenings, if you like. (There are even “bonus” challenges,

if you finish early.)

45

OSG Summer School 2019

• Ask questions!
• Lots of instructors around
• Coming next:

- Now: Hands-on Exercises
- 10:30 – 10:45 Break
- 10:45 – 11:15 Submitting Many Jobs
- 11:15 – 12:15 Hands-on Exercises

Exercises!

46

