pen Science Grid

Introduction to High Throughput
Computing and HTCondor

Monday AM, Lecture 1

Lauren Michael

o Overview - 1.1

 What is high throughput computing (HTC) ?
 How does the HTCondor job scheduler work?

 How do you run jobs on an HTCondor
compute system?

—

- —

o e e Keys to Success

e Work hard

e Ask questions!
...during lectures
...during exercises
...during breaks
...during meals

e |f we do not know an answer, we will try to
find the person who does.

Serial Computing

What many
programs look like:

e Serial execution, running on one processor
(CPU core) at a time

e Overall compute time grows significantly as
individual tasks get more complicated (long)
or if the number of tasks increases

e How can you speed things up?

time

OSG Summer School 2019

——...High Throughput Computing (HTC) .

o Parallelize!
e Independent tasks run on different cores

n cores

)
vERTENE

OSG Summer School 2019 5

—

e High Performance Computing (HPC)

Open Science Grid

n cores

—_—

9000 ©

:

time

—

... High Performance Computing (HPC)

Open Science Grid

» Benefits greatly from: n cores

—_—

— Fast, expensive networking (e.g. = ‘:.:.:.Z‘
Infiniband) and servers co-located = 4L

e Scheduling: Must wait until all
processors are available, af the same .:mz.
time and for the full duration

* Requires special programming (MP/MPI)

 What happens if one core or server
fails or runs slower than the others?

— CPU speed + homogeneity
— Shared filesystems

Op

n Sc

.. High Throughput Computing (HTC)

N cores i

Scheduling: only need 1 CPU core for each (shorter wait)
Easier recovery from failure

No special programming required

Number of concurrently running jobs is more important

e CPU speed and homogeneity are /less important

OSG Summer School 2019

=~ .. HPC vs HTC: An Analogy

OSG Summer School 2019

==

Open Science Grid

HPC vs HTC: An Analogy

OSG Summer School 2019

10

eeeee

nce Gri

HTC

Focus: Large workflows of
numerous, relatively
small, and independent
compute tasks

More important. maximized
number of running tasks

Less important: CPU speed,
homogeneity

HPC

e Focus: Large workflows of
highly-interdependent
sub-tasks

 More important: persistent
access to the fastest
cores, CPU homogeneity,
special coding, shared
filesystems, fast networks

— HTC Examples

Open Science Grid

:
E
i
z
L
5
S
s
3
|
P
s
3
g
i
g
z
2
Z
““1
-

Ths suggests that the stromatolites from Cerro Gordowere deposited well after deposition of

"“" conj———>
2 compou g aomod: e @.
the precipitates and the Virgin Limestone stromatolites , and probably correlate to the terrestrial and w'
z o0
g
5o
e a i
e R wor merereriNgy o meremercm b 5 o
evaporitic facies of the Schnabkaib Member of the Moenkopi Formation from SW Nevada . g o
o

text analysis (most genomics ... e e . : :
ysis (9 !) parameter sweeps multi-start simulations

53

Ellogipi®)] &

2eom.4l

l1c-=cervdenl samples

statistical model optimization multi-image and

(MCMC, numerical methods, etc.) multi-sample analysis

OSG Summer School 2019 12

—

... Isyourresearch HTC-able?

 Can it be broken into relatively numerous,
independent pieces?

e Think about your research! Can you think of a
good high throughput candidate task? Talk to
your neighbor!

You need to process 48 brain images for each of 168
patients. Each image takes ~1 hour of compute time.

168 patients x 48 images = ~8000 tasks = ~8000 hrs

Conference is next week.

—

e Distributed Computing

 Use many computers, each running one
iInstance of our program

 Example:
— 1 laptop (1 core) => 4,000 hours = ~': year
— 1 server (~20 cores) => 500 hours = ~3 weeks

— 1 large job (400 cores) => 20 hours = ~1 day
— A whole cluster (8,000 cores) =~8 hours

oS e Break Up to Scale Up

 Computing tasks that are easy to break
up are easy to scale up.

e To truly grow your computing
capabilities, you also need a system
appropriate for your computing task!

—— ... What computing resources are available?

e A single computer?

e A local cluster?

— Consider: What kind of cluster is it? Typical clusters tuned
for HPC (large MPI) jobs typically may not be best for HTC
workflows! Do you need even more than that?

e Open Science Grid (OSG)
e Other

— European Grid Infrastructure
— Other national and regional grids
— Commercial cloud systems (e.g. HTCondor on Amazon)

oo S o Example Local Cluster

e UW-Madison’s Center for

High Throughput
Computing (CHTC) CHTC POOI
» Recent CPU hours: single-core
~130 million hrs/year (~15k cores) high-memory
~10,000 per user, per day multi-core
(~400 cores in use) . GPUs M Pl

submit
server

OSG Summer School 2019

———

—_

oo e Open Science Grid
« HTC for Everyone i foe |

Wisconsin Mainel &8 Scotia

e < T
_ ~100 contributor | Shr | i
CO u O S 7 7 & 4 Neh»ask@ lowa " 4 2 ansydla \\ B
Bl Nevadaspnd T 5 't',"" | United States I gina A bk
- Past year. A et l"‘,‘, :, Cooraro K:“sas Missouri i VY’@’ A\ w lllllllllll
" CalMtnioy 1 oy : QUEERY I Ja New Jersey
é'. . § Okiedoma pnoncas 19"er95599 Cr;rolwrr:a \\Dlela:are
ilh I 2 Mary
= >420 million jobs B e 0 gUELGeRde. See
izih Texas () bamce?ﬁ%ﬂ .
HIH & @ Louislana
= >1.5 billion CPU hours : e
‘!‘4‘: onga
2 /'b. 4 3
= >200 petabytes transferred o
oey

ppppp

e (Can submit jobs locally, they backfill across the country
- interrupted at any time (but not too frequent)

e http://www.opensciencegrid.org/

Open Science Grid

HTCONDOR

OSG Summer School 2019

20

... HTCondor History and Status
agr

e History

— Started in 1988 as a “cycle scavenger” I-"COH

 Today
— Developed within the CHTC team by professional developers

— Used all over the world, by:
» Dreamworks, Boeing, SpaceX, investment firms, ...

= Campuses, national labs, Einstein/Folding@Home
= The Open Science Grid!!

e Miron Livny, CHTC Director and HTCondor Pl

— Professor, UW-Madison Computer Sciences J

=~— HTCondor -- How It Works

o Submit tasks to a queue (on a submit server)

e HTCondor schedules them to run on
computers (execute server)

OSG Summer School 2019

submit point

—>

execute

execute

execute

22

oo Terminology: Job

e Job: An independently-scheduled unit of computing
work

e Three main pieces:
Executable: the script or program to run
Input: any options (arguments) and/or file-based information
Output: any files or screen information produced by the
executable

e |n order to run many jobs, executable must run on the
command-line without any graphical input from the user

—

—.... Terminology: Machine, Slot

* Machine
— A whole computer (desktop or server) L N

— Has multiple processors (CPU cores), some amount of memory;
and some amount of file space (disk)

o Slot
— an assignable unit of a machine (i.e. 1 job per slot)
— most often, corresponds to one core with some memory and disk
— a typical machine may have 4-40 slots

« HTCondor can break up and create new slots, dynamically, as
resources become available from completed jobs

oo o Job Matching

e On aregular basis, the central manager reviews Job
and Machine attributes and matches jobs to Slots.

HICond%r

execute

N\, | execute

central manager

execute

OSG Summer School 2019

pen Science Grid

BASIC JOB SUBMISSION

Job Example

e program called “compare_states” (executable), which
compares two data files (input) and produces a single
output file.

$ compare states wi.dat us.dat wi.dat.out

OSG Summer School 2019

27

o Job Translation

o Submit file: communicates everything
about your job(s) to HTCondor

executable =
arguments =

error = job.

queue 1

request_cpus =
request_disk = 20MB
request_memory = 20MB

compare_states
wi.dat us.dat wi.dat.out

transfer input files = us.dat, wi.dat

log = job.log
output = job.out

err

1

—>HICon

dosr

———

== Basic Submit File

Open Science Grid

executable = compare states
arguments = wi.dat us.dat wi.dat.out

transfer input files = us.dat, wi.dat
log = job.log

output = job.out

error = job.err

request cpus = 1

request disk = 20MB

request memory = 20MB

queue 1

—

== Basic Submit File

Open Science Grid

e Listyour executable

executable = compare states :
arguments = wi.dat us.dat wi.dat.out and any arguments It
takes

transfer input files = us.dat, wi.dat
log = job.log

output = job.out
error = job.err

N — Arguments are any
request_disk = 20MB options passed to the
request memory = 20MB

executable from the

command line

$ compare states wi.dat us.dat wi.dat.out

queue 1

= Basic Submit File

pen Science Grid

e Comma separated list
X table = tat . .
arguments = wi.dat us.dat wi.dat.out of input files to
transfer to the slot

transfer input files = us.dat, wi.dat

log = job.log
output = _ job.out wi.dat
error = Jjob.err

request cpus = 1
request disk = 20MB
request memory = 20MB us.dat

queue 1

T

=== Basic Submit File

Open Science Grid

executable = compare states
arguments = wi.dat us.dat wi.dat.out

transfer input files = us.dat, wi.dat

log = job.log
output = job.out

error = job.err
request cpus = 1
request disk = 20MB

request memory = 20MB

queue 1

OSG Summer School 2019

HTCondor will transfer
back all new and
changed files (output)
from the job,
automatically.

32

== Basic Submit File

Open Science Grid

executable = compare states
arguments = wi.dat us.dat wi.dat.out

transfer input files = us.dat, wi.dat
log = job.log

output = job.out

error = job.err

request cpus = 1

request disk = 20MB

request memory = 20MB

queue 1

log: file created by
HTCondor to track job
progress

— Explored in exercises!

output/error:

captures stdout and stderr
from your program (what
would otherwise be printed
to the terminal)

o Basic Submit File

executable = compare states
arguments = wi.dat us.dat wi.dat.out

transfer input files = us.dat, wi.dat
log = job.log

output = job.out

error = job.err

request cpus = 1

request disk = 20MB

request memory = 20MB

queue 1

request the resources
your job needs.

— More on this later!
queue: keyword
indicating “create 1 job”

pen Science Grid

SUBMITTING AND
MONITORING

. Submitting and Monitoring

e To submit a job/jobs: condor submit submit file
e To monitor submitted jobs: condor g

$ condor_submit job.submit
Submitting job(s).
1 job(s) submitted to cluster 128.

$ condor_q

-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?... @ 05/01/17
10:35:54

OWNER BATCH NAME SUBMITTED DONE 1INV IDLE TOTAL JOB_ IDS
alice CMD: compare states 5/9 11:05 _ 1 1 128.0

1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended

HTCondor Manual: condor submit
HTCondor Manual: condor g

http://research.cs.wisc.edu/htcondor/manual/v8.5/condor_submit.html
http://research.cs.wisc.edu/htcondor/manual/v8.5/condor_q.html

More about condor q

e By default, condor g shows your jobs only and batches
jobs that were submitted together:

$ condor_ g

-— Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?... @ 05/01/17
10:35:54

OWNER BATCH NAME SUBMITTED DONE 1INV IDLE TOTAL JOB_ IDS

alice CMD: compare states 5/9 11:05 _ 1 1 128.0

1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended

JobId =ClusterlId .ProclId

e Limit condor g by username, ClusterId or full
JobId, (denoted [U/C/J] in following slides).

More about condor q

e To see individual job details, use:
condor_q —nobatch

$ condor_g -nobatch
-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...
ID OWNER SUBMITTED RUN TIME ST PRI SIZE CMD

128.0 alice 5/9 11:09 0+00:00:00 I O 0.0 compare states

1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended

e We will use the —-nobatch option in the following slides
to see extra detail about what is happening with a job

Job ldle

$ condor_g -nobatch
-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...

ID OWNER SUBMITTED RUN_TIME@DRI SIZE CMD

128.0 alice 5/9 11:09 0+00:00:0

1 jobs; 0 completed, 0 remov running, 0 held, 0 suspended

Submit Node

(submit dir)/
job.submit
compare_ states
wi.dat
us.dat
job.log
job.out
job.err

0 0.0 compare states wi.dat us.dat

Job Starts

$ condor_gq -nobatch
-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:96182...
ID OWNER SUBMITTED RUN_TIME RI SIZE CMD
128.0 alice 5/9 11:09 0+00:00:0 0.0 compare states wi.dat us.dat

1 jobs; 0 completed, 0 removed, 0 idle, 1 running, 0 held, 0 suspended

Submit Node Execute Node

(submit dir)/ (execute dir)/
job.submit compare states
compare states wi.dat
wi.dat us.dat
us.dat
job.log
job.out
job.err

Job Running

$ condor_gq -nobatch
-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...

1D OWNER SUBMITTED RUN_ TIME i CMD
128.0 alice 5/9 11:09 o+oo:01:o 0 0.0 compare states wi.dat us.dat
1 jobs; 0 completed, 0 removed, 0 idle p held, 0 suspended
Submit Node Execute Node
(submit dir)/ (execute dir)/
job.submit compare_ states
compare_ states wi.dat
wi.dat us.dat
us.dat stderr
job.log stdout
job.out wi.dat.out
job.err

Job Completes

$ condor_gq -nobatch
-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...
ID OWNER SUBMITTED RUN_TIME@DRI SIZE CMD

128 alice 5/9 11:09 0+00:02:0 0 0.0 compare_ states wi.dat us.dat

1 jobs; 0 completed, 0 removed, 0 idle, 1 running, 0 held, 0 suspended

Submit Node Execute Node
(submit dir)/ (execute dir)/

job.submit compare_states
compare_ states wi.dat

wi.dat stderr us.dat

us.dat .stdout stderr

job.log wi.dat.out stdout

job.out <€ wi.dat.out

job.err

Job Completes (cont.)

ari

$ condor_gq -nobatch

—— Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?2...
ID OWNER SUBMITTED RUN_ TIME ST PRI SIZE CMD

0 jobs; 0 completed, 0 removed, 0 idle, 0 running, 0 held, 0 suspended

Submit Node

(submit dir)/
job.submit
compare_ states
wi.dat
us.dat
job.log
job.out
job.err
wi.dat.out

OSG Summer School 2019

CHTC Pool

single-core
high-memory

multi-core

seus MPI

submit
server

—

-

oo omen Thoughts on Exercises

e Copy-and-paste is quick, but you WILL learn more by
typing out commands (first) submit file contents

 Exercises 1.1-1.3 are most important to finish THIS
time (see 1.6 if you need to remove jobs)!

e If you do not finish, that's OK — You can make up work later or
during evenings, if you like. (There are even “bonus” challenges,
if you finish early.)

—
v

Open Science Grid

Exercises!

 Ask questions!
e Lots of instructors around

e Coming next:
— Now: Hands-on Exercises

10:30 —
10:45 - -

11:15 -~

0:45 Break
1:15 Submitting Many Jobs
2:15 Hands-on Exercises

