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Overview – 1.1

• What is high throughput computing (HTC) ?
• How does the HTCondor job scheduler work?
• How do you run jobs on an HTCondor 

compute system?
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Keys to Success
• Work hard
• Ask questions!

…during lectures
...during exercises
...during breaks
...during meals

• If we do not know an answer, we will try to 
find the person who does.
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Serial Computing

• Serial execution, running on one processor 
(CPU core) at a time

• Overall compute time grows significantly as 
individual tasks get more complicated (long) 
or if the number of tasks increases

• How can you speed things up?

tim
e

What many 
programs look like:
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High Throughput Computing (HTC)

• Parallelize!
• Independent tasks run on different cores

tim
e

n cores
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High Performance Computing (HPC)

tim
e

n cores

…

…

…
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High Performance Computing (HPC)

• Benefits greatly from:
- CPU speed + homogeneity
- Shared filesystems
- Fast, expensive networking (e.g. 

Infiniband) and servers co-located
• Scheduling: Must wait until all 

processors are available, at the same 
time and for the full duration

• Requires special programming (MP/MPI)
• What happens if one core or server 

fails or runs slower than the others?
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High Throughput Computing (HTC)

• Scheduling: only need 1 CPU core for each (shorter wait)
• Easier recovery from failure
• No special programming required
• Number of concurrently running jobs is more important
• CPU speed and homogeneity are less important

8
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HPC vs HTC: An Analogy
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HPC vs HTC: An Analogy
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High Throughput vs High Performance

HTC
• Focus: Large workflows of 

numerous, relatively 
small, and independent
compute tasks

• More important: maximized 
number of running tasks

• Less important: CPU speed, 
homogeneity

HPC
• Focus: Large workflows of 

highly-interdependent
sub-tasks

• More important: persistent 
access to the fastest
cores, CPU homogeneity, 
special coding, shared 
filesystems, fast networks
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HTC Examples

12

text analysis (most genomics …) parameter sweeps

statistical model optimization
(MCMC, numerical methods, etc.)

multi-start simulations

multi-image and 
multi-sample analysis
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Is your research HTC-able?
• Can it be broken into relatively numerous, 

independent pieces?

• Think about your research! Can you think of a 
good high throughput candidate task? Talk to 
your neighbor!
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Example Challenge

You need to process 48 brain images for each of 168 
patients. Each image takes ~1 hour of compute time.

168 patients x 48 images = ~8000 tasks = ~8000 hrs

Conference is next week.
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Distributed Computing

• Use many computers, each running one 
instance of our program

• Example:
- 1 laptop (1 core) => 4,000 hours  =  ~½ year
- 1 server (~20 cores) => 500 hours  =  ~3 weeks
- 1 large job (400 cores) => 20 hours  =  ~1 day
- A whole cluster (8,000 cores)  = ~8 hours
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Break Up to Scale Up
• Computing tasks that are easy to break 

up are easy to scale up.

• To truly grow your computing 
capabilities, you also need a system 
appropriate for your computing task!
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What computing resources are available?

• A single computer?
• A local cluster?

- Consider: What kind of cluster is it? Typical clusters tuned 
for HPC (large MPI) jobs typically may not be best for HTC 
workflows! Do you need even more than that?

• Open Science Grid (OSG)
• Other

- European Grid Infrastructure
- Other national and regional grids
- Commercial cloud systems (e.g. HTCondor on Amazon)
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Example Local Cluster
• UW-Madison’s Center for 

High Throughput 
Computing (CHTC)

• Recent CPU hours:
~130 million hrs/year (~15k cores)
~10,000 per user, per day

(~400 cores in use)

18

CHTC Pool
single-core

multi-core

high-memory

GPUs MPI
submit 
server
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Open Science Grid
• HTC for Everyone

- ~100 contributors
- Past year:

§ >420 million jobs
§ >1.5 billion CPU hours
§ >200 petabytes transferred

• Can submit jobs locally, they backfill across the country
- interrupted at any time (but not too frequent)

• http://www.opensciencegrid.org/
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HTCONDOR
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HTCondor History and Status
• History

- Started in 1988 as a “cycle scavenger”

• Today

- Developed within the CHTC team by professional developers

- Used all over the world, by:

§ Dreamworks, Boeing, SpaceX, investment firms, …
§ Campuses, national labs, Einstein/Folding@Home
§ The Open Science Grid!!

• Miron Livny, CHTC Director and HTCondor PI

- Professor, UW-Madison Computer Sciences
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HTCondor -- How It Works
• Submit tasks to a queue (on a submit server)
• HTCondor schedules them to run on 

computers (execute server)

submit point
execute

execute

execute
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Terminology: Job
• Job: An independently-scheduled unit of computing 

work
• Three main pieces:

Executable: the script or program to run
Input: any options (arguments) and/or file-based information
Output: any files or screen information produced by the 
executable

• In order to run many jobs, executable must run on the 
command-line without any graphical input from the user
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Terminology: Machine, Slot
• Machine

- A whole computer (desktop or server)
- Has multiple processors (CPU cores), some amount of memory, 

and some amount of file space (disk)

• Slot
- an assignable unit of a machine (i.e. 1 job per slot)
- most often, corresponds to one core with some memory and disk
- a typical machine may have 4-40 slots

• HTCondor can break up and create new slots, dynamically, as 
resources become available from completed jobs
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Job Matching
• On a regular basis, the central manager reviews Job

and Machine attributes and matches jobs to Slots.

submit execute

execute

execute

central manager



OSG Summer School 2019

BASIC JOB SUBMISSION
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Job Example
• program called “compare_states” (executable), which 

compares two data files (input) and produces a single 
output file.
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wi.dat

compare_
states

us.dat

wi.dat.out

$ compare_states wi.dat us.dat wi.dat.out
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Job Translation
• Submit file: communicates everything 

about your job(s) to HTCondor
executable = compare_states
arguments = wi.dat us.dat wi.dat.out

transfer_input_files = us.dat, wi.dat

log = job.log
output = job.out
error = job.err

request_cpus = 1
request_disk = 20MB
request_memory = 20MB

queue 1
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executable = compare_states
arguments = wi.dat us.dat wi.dat.out

transfer_input_files = us.dat, wi.dat

log = job.log
output = job.out
error = job.err

request_cpus = 1
request_disk = 20MB
request_memory = 20MB

queue 1

Basic Submit File
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executable = compare_states
arguments = wi.dat us.dat wi.dat.out

transfer_input_files = us.dat, wi.dat

log = job.log
output = job.out
error = job.err

request_cpus = 1
request_disk = 20MB
request_memory = 20MB

queue 1

Basic Submit File
• List your executable

and any arguments it 
takes

• Arguments are any 
options passed to the 
executable from the 
command line

compare_
states

$ compare_states wi.dat us.dat wi.dat.out
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executable = compare_states
arguments = wi.dat us.dat wi.dat.out

transfer_input_files = us.dat, wi.dat

log = job.log
output = job.out
error = job.err

request_cpus = 1
request_disk = 20MB
request_memory = 20MB

queue 1

Basic Submit File
• Comma separated list 

of input files to 
transfer to the slot

wi.dat

us.dat
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Basic Submit File
• HTCondor will transfer 

back all new and 
changed files (output) 
from the job, 
automatically.

executable = compare_states
arguments = wi.dat us.dat wi.dat.out

transfer_input_files = us.dat, wi.dat

log = job.log
output = job.out
error = job.err

request_cpus = 1
request_disk = 20MB
request_memory = 20MB

queue 1

wi.dat.out
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Basic Submit File
• log: file created by 

HTCondor to track job 
progress
- Explored in exercises!

• output/error: 
captures stdout and stderr
from your program (what 
would otherwise be printed 
to the terminal)

executable = compare_states
arguments = wi.dat us.dat wi.dat.out

transfer_input_files = us.dat, wi.dat

log = job.log
output = job.out
error = job.err

request_cpus = 1
request_disk = 20MB
request_memory = 20MB

queue 1

33



OSG Summer School 2019

Basic Submit File
• request the resources 

your job needs.
- More on this later!

• queue: keyword 
indicating “create 1 job”

executable = compare_states
arguments = wi.dat us.dat wi.dat.out

transfer_input_files = us.dat, wi.dat

log = job.log
output = job.out
error = job.err

request_cpus = 1
request_disk = 20MB
request_memory = 20MB

queue 1
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SUBMITTING AND 
MONITORING

35
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Submitting and Monitoring
• To submit a job/jobs:  condor_submit submit_file

• To monitor submitted jobs:  condor_q

$ condor_submit job.submit
Submitting job(s).
1 job(s) submitted to cluster 128.

$ condor_q
-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?... @ 05/01/17 
10:35:54
OWNER  BATCH_NAME             SUBMITTED   DONE   RUN    IDLE  TOTAL JOB_IDS
alice  CMD: compare_states   5/9  11:05      _      _      1      1 128.0

1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended

HTCondor Manual: condor_submit
HTCondor Manual: condor_q 36

http://research.cs.wisc.edu/htcondor/manual/v8.5/condor_submit.html
http://research.cs.wisc.edu/htcondor/manual/v8.5/condor_q.html
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More about condor_q
• By default, condor_q shows your jobs only and batches

jobs that were submitted together:

• Limit condor_q by username, ClusterId or full 
JobId, (denoted [U/C/J] in following slides).

$ condor_q
-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?... @ 05/01/17 
10:35:54
OWNER  BATCH_NAME             SUBMITTED   DONE   RUN    IDLE  TOTAL JOB_IDS
alice  CMD: compare_states   5/9  11:05      _      _      1      1 128.0

1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended

JobId = ClusterId .ProcId
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More about condor_q
• To see individual job details, use:
condor_q –nobatch

• We will use the -nobatch option in the following slides 
to see extra detail about what is happening with a job

$ condor_q -nobatch
-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...
ID          OWNER      SUBMITTED     RUN_TIME ST PRI SIZE CMD
128.0        alice 5/9  11:09   0+00:00:00 I  0   0.0 compare_states

1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended
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Job Idle

(submit_dir)/
job.submit
compare_states
wi.dat
us.dat
job.log
job.out
job.err

$ condor_q -nobatch
-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...
ID          OWNER      SUBMITTED     RUN_TIME ST PRI SIZE CMD

128.0        alice 5/9  11:09   0+00:00:00 I  0   0.0 compare_states wi.dat us.dat

1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended

Submit Node

39
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Job Starts

compare_states
wi.dat
us.dat

$ condor_q -nobatch
-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...
ID          OWNER      SUBMITTED     RUN_TIME ST PRI SIZE CMD

128.0        alice 5/9  11:09   0+00:00:00 <  0   0.0 compare_states wi.dat us.dat

1 jobs; 0 completed, 0 removed, 0 idle, 1 running, 0 held, 0 suspended

(execute_dir)/

40

(submit_dir)/
job.submit
compare_states
wi.dat
us.dat
job.log
job.out
job.err

Submit Node Execute Node
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Job Running
$ condor_q -nobatch
-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...
ID          OWNER      SUBMITTED     RUN_TIME ST PRI SIZE CMD

128.0        alice 5/9  11:09   0+00:01:08 R  0   0.0 compare_states wi.dat us.dat

1 jobs; 0 completed, 0 removed, 0 idle, 1 running, 0 held, 0 suspended

(execute_dir)/
compare_states
wi.dat
us.dat
stderr
stdout
wi.dat.out

41

(submit_dir)/
job.submit
compare_states
wi.dat
us.dat
job.log
job.out
job.err

Submit Node Execute Node
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Job Completes

stderr
stdout

wi.dat.out

$ condor_q -nobatch
-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...
ID          OWNER      SUBMITTED     RUN_TIME ST PRI SIZE CMD

128          alice 5/9  11:09   0+00:02:02 >  0   0.0 compare_states wi.dat us.dat

1 jobs; 0 completed, 0 removed, 0 idle, 1 running, 0 held, 0 suspended
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(execute_dir)/
compare_states
wi.dat
us.dat
stderr
stdout
wi.dat.out

(submit_dir)/
job.submit
compare_states
wi.dat
us.dat
job.log
job.out
job.err

Submit Node Execute Node
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Job Completes (cont.)
$ condor_q -nobatch

-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...
ID      OWNER            SUBMITTED     RUN_TIME ST PRI SIZE CMD

0 jobs; 0 completed, 0 removed, 0 idle, 0 running, 0 held, 0 suspended
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(submit_dir)/
job.submit
compare_states
wi.dat
us.dat
job.log
job.out
job.err
wi.dat.out

Submit Node
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YOUR TURN!

44

CHTC Pool
single-core

multi-core

high-memory

GPUs MPI
submit 
server
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Thoughts on Exercises
• Copy-and-paste is quick, but you WILL learn more by 

typing out commands (first) submit file contents

• Exercises 1.1-1.3 are most important to finish THIS 

time (see 1.6 if you need to remove jobs)!

• If you do not finish, that’s OK – You can make up work later or 

during evenings, if you like. (There are even “bonus” challenges, 

if you finish early.)
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• Ask questions!
• Lots of instructors around
• Coming next:

- Now: Hands-on Exercises
- 10:30 – 10:45 Break
- 10:45 – 11:15 Submitting Many Jobs
- 11:15 – 12:15 Hands-on Exercises

Exercises!
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