
Workflows with HTCondor’s
DAGMan

Monday, Lecture 4
Lauren Michael

OSG Summer School 2018

Questions so far?

2

OSG Summer School 2018

Goals for this Session
• Describing workflows as directed acyclic graphs

(DAGs)
• Workflow execution via DAGMan (DAG Manager)
• Node-level options in a DAG
• Modular organization of DAG components
• Additional DAGMan Features

3

OSG Summer School 2018

WHY WORKFLOWS?
WHY DAGS?

4

OSG Summer School 2018

Automation!

• Objective: Submit jobs
in a particular order,
automatically.

• Especially if: Need to
replicate the same
workflow multiple times
in the future.

1 2 3 N...

split

combine

OSG Summer School 2018

DAG = ”directed acyclic graph”

• topological ordering of
vertices (“nodes”) is
established by directional
connections (“edges”)

• “acyclic” aspect requires a
start and end, with no looped
repetition
- can contain cyclic

subcomponents, covered in
later slides for DAG workflows

wikipedia.org/wiki/Directed_acyclic_graph

Wikimedia Commons

OSG Summer School 2018

DESCRIBING WORKFLOWS
WITH DAGMAN

7

OSG Summer School 2018

DAGMan in the HTCondor Manual

OSG Summer School 2018

An Example HTC Workflow

• User must
communicate the
“nodes” and directional
“edges” of the DAG 1 2 3 N...

split

combine

OSG Summer School 2018

Simple Example for this Tutorial

HTCondor Manual: DAGMan Applications > DAG Input File

• The DAG input file
will communicate the
“nodes” and directional
“edges” of the DAG ...B1 B2 B3 BN

A

C

OSG Summer School 2018

Simple Example for this Tutorial

HTCondor Manual: DAGMan Applications > DAG Input File

• The DAG input file
will communicate the
“nodes” and directional
“edges” of the DAG ...B1 B2 B3 BN

A

C

OSG Summer School 2018

JOB A A.sub
JOB B1 B1.sub
JOB B2 B2.sub
JOB B3 B3.sub
JOB C C.sub
PARENT A CHILD B1 B2 B3
PARENT B1 B2 B3 CHILD C

my.dag

HTCondor Manual: DAGMan Applications > DAG Input File

• Node names are used by various DAG
features to modify their execution by DAG
Manager.

Basic DAG input file:
JOB nodes, PARENT-CHILD edges

...B1 B2 B3 BN

A

C

OSG Summer School 2018

Basic DAG input file:
JOB nodes, PARENT-CHILD edges

• Node names and filenames can be anything.
• Node name and submit filename do not have to match.

HTCondor Manual: DAGMan Applications > DAG Input File

(dag_dir)/
A.sub B1.sub
B2.sub B3.sub
C.sub my.dag
(other job files)

JOB A A.sub
JOB B1 B1.sub
JOB B2 B2.sub
JOB B3 B3.sub
JOB C C.sub
PARENT A CHILD B1 B2 B3
PARENT B1 B2 B3 CHILD C

my.dag

OSG Summer School 2018

Endless Workflow Possibilities

Wikimedia Commons

https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator

OSG Summer School 2018

Endless Workflow Possibilities

https://confluence.pegasus.isi.edu

OSG Summer School 2018

Repeating DAG Components!!

https://confluence.pegasus.isi.edu/display/pegasus/LIGO+IHOPE

OSG Summer School 2018

DAGs are also useful for non-
sequential work

‘bag’ of HTC jobs disjointed workflows

...B1 B2 B3 BN

OSG Summer School 2018

JOB A A.sub
JOB B1 B1.sub
JOB B2 B2.sub
JOB B3 B3.sub
JOB C C.sub
PARENT A CHILD B1 B2 B3
PARENT B1 B2 B3 CHILD C

my.dag

HTCondor Manual: DAGMan Applications > DAG Input File

Basic DAG input file:
JOB nodes, PARENT-CHILD edges

...B1 B2 B3 BN

A

C

OSG Summer School 2018

SUBMITTING AND
MONITORING A DAGMAN
WORKFLOW

19

OSG Summer School 2018

Submitting a DAG to the queue
• Submission command:

condor_submit_dag dag_file

$ condor_submit_dag my.dag

--
File for submitting this DAG to HTCondor : mydag.dag.condor.sub
Log of DAGMan debugging messages : mydag.dag.dagman.out
Log of HTCondor library output : mydag.dag.lib.out
Log of HTCondor library error messages : mydag.dag.lib.err
Log of the life of condor_dagman itself : mydag.dag.dagman.log

Submitting job(s).
1 job(s) submitted to cluster 87274940.
--

HTCondor Manual: DAGMan > DAG Submission

OSG Summer School 2018

A submitted DAG creates and
DAGMan job in the queue

• DAGMan runs on the submit server, as a job in the
queue

• At first:
$ condor_q
-- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?...
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS
alice my.dag+128 4/30 18:08 _ _ _ _ 0.0
1 jobs; 0 completed, 0 removed, 0 idle, 1 running, 0 held, 0 suspended

$ condor_q -nobatch
-- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?...
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
128.0 alice 4/30 18:08 0+00:00:06 R 0 0.3 condor_dagman
1 jobs; 0 completed, 0 removed, 0 idle, 1 running, 0 held, 0 suspended

HTCondor Manual: DAGMan > DAG Submission

OSG Summer School 2018

Jobs are automatically submitted
by the DAGMan job

• Seconds later, node A is submitted:
$ condor_q
-- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?...
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS
alice my.dag+128 4/30 18:08 _ _ 1 5 129.0
2 jobs; 0 completed, 0 removed, 1 idle, 1 running, 0 held, 0 suspended

$ condor_q -nobatch
-- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?...
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
128.0 alice 4/30 18:08 0+00:00:36 R 0 0.3 condor_dagman
129.0 alice 4/30 18:08 0+00:00:00 I 0 0.3 A_split.sh
2 jobs; 0 completed, 0 removed, 1 idle, 1 running, 0 held, 0 suspended

HTCondor Manual: DAGMan > DAG Submission

OSG Summer School 2018

Jobs are automatically submitted
by the DAGMan job

• After A completes, B1-3 are submitted
$ condor_q
-- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?...
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS
alice my.dag+128 4/30 8:08 1 _ 3 5 129.0...132.0
4 jobs; 0 completed, 0 removed, 3 idle, 1 running, 0 held, 0 suspended

$ condor_q -nobatch
-- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?...
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
128.0 alice 4/30 18:08 0+00:20:36 R 0 0.3 condor_dagman
130.0 alice 4/30 18:18 0+00:00:00 I 0 0.3 B_run.sh
131.0 alice 4/30 18:18 0+00:00:00 I 0 0.3 B_run.sh
132.0 alice 4/30 18:18 0+00:00:00 I 0 0.3 B_run.sh
4 jobs; 0 completed, 0 removed, 3 idle, 1 running, 0 held, 0 suspended

HTCondor Manual: DAGMan > DAG Submission

OSG Summer School 2018

Jobs are automatically submitted
by the DAGMan job

• After B1-3 complete, node C is submitted

HTCondor Manual: DAGMan > DAG Submission

$ condor_q
-- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?...
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS
alice my.dag+128 4/30 8:08 4 _ 1 5 129.0...133.0
2 jobs; 0 completed, 0 removed, 1 idle, 1 running, 0 held, 0 suspended

$ condor_q -nobatch
-- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?...
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
128.0 alice 4/30 18:08 0+00:46:36 R 0 0.3 condor_dagman
133.0 alice 4/30 18:54 0+00:00:00 I 0 0.3 C_combine.sh
2 jobs; 0 completed, 0 removed, 1 idle, 1 running, 0 held, 0 suspended

OSG Summer School 2018

Status files are Created at the time
of DAG submission

A.sub B1.sub B2.sub
B3.sub C.sub (other job files)
my.dag my.dag.condor.sub my.dag.dagman.log
my.dag.dagman.out my.dag.lib.err my.dag.lib.out
my.dag.nodes.log

(dag_dir)/

DAGMan > DAG Monitoring and DAG Removal

*.condor.sub and *.dagman.log describe the queued DAGMan
job process, as for any other jobs

*.dagman.out has DAGMan-specific logging (look to first for errors)
*.lib.err/out contain std err/out for the DAGMan job process
*.nodes.log is a combined log of all jobs within the DAG

OSG Summer School 2018

Removing a DAG from the queue
• Remove the DAGMan job in order to stop and remove the entire

DAG:
condor_rm dagman_jobID

• Creates a rescue file so that only incomplete or unsuccessful
NODES are repeated upon resubmission

$ condor_q
-- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?...
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS
alice my.dag+128 4/30 8:08 4 _ 1 6 129.0...133.0
2 jobs; 0 completed, 0 removed, 1 idle, 1 running, 0 held, 0 suspended

$ condor_rm 128
All jobs in cluster 128 have been marked for removal

DAGMan > DAG Monitoring and DAG Removal
DAGMan > The Rescue DAG

OSG Summer School 2018

Removal of a DAG results in a
rescue file

• Named dag_file.rescue001
§ increments if more rescue DAG files are created

• Records which NODES have completed successfully
§ does not contain the actual DAG structure

DAGMan > DAG Monitoring and DAG Removal
DAGMan > The Rescue DAG

A.sub B1.sub B2.sub B3.sub C.sub (other job files)
my.dag my.dag.condor.sub my.dag.dagman.log
my.dag.dagman.out my.dag.lib.err my.dag.lib.out
my.dag.metrics my.dag.nodes.log my.dag.rescue001

(dag_dir)/

OSG Summer School 2018

Rescue Files For Resuming a
Failed DAG

• A rescue file is created when:
- a node fails, and after DAGMan advances through

any other possible nodes
- the DAG is removed from the queue

(or aborted; covered later)
- the DAG is halted and not unhalted

(covered later)
• Resubmission uses the rescue file (if it exists)

when the original DAG file is resubmitted
- override: condor_submit_dag dag_file -f

DAGMan > The Rescue DAG

OSG Summer School 2018

...B1 B2 B3 BN

A

C

Node Failures Result in DAG
Failure

• If a node JOB fails (non-
zero exit code)
- DAGMan continues to run

other JOB nodes until it can
no longer make progress

• Example at right:
- B2 fails
- Other B* jobs continue
- DAG fails and exits after B*

and before node C
DAGMan > The Rescue DAG

OSG Summer School 2018

Resolving held node jobs

• Look at the hold reason (in the job log, or with
‘condor_q -hold’)

• Fix the issue and release the jobs (condor_release)
-OR- remove the entire DAG, resolve, then resubmit
the DAG (remember the automatic rescue DAG file!)

$ condor_q -nobatch
-- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?...
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
128.0 alice 4/30 18:08 0+00:20:36 R 0 0.3 condor_dagman
130.0 alice 4/30 18:18 0+00:00:00 H 0 0.3 B_run.sh
131.0 alice 4/30 18:18 0+00:00:00 H 0 0.3 B_run.sh
132.0 alice 4/30 18:18 0+00:00:00 H 0 0.3 B_run.sh
4 jobs; 0 completed, 0 removed, 0 idle, 1 running, 3 held, 0 suspended

HTCondor Manual: DAGMan > DAG Submission

OSG Summer School 2018

DAG Completion

DAGMan > DAG Monitoring and DAG Removal

*.dagman.metrics is a summary of events and outcomes
*.dagman.log will note the completion of the DAGMan job
*.dagman.out has detailed logging (look to first for errors)

A.sub B1.sub B2.sub
B3.sub C.sub (other job files)
my.dag my.dag.condor.sub my.dag.dagman.log
my.dag.dagman.out my.dag.lib.err my.dag.lib.out
my.dag.nodes.log my.dag.dagman.metrics

(dag_dir)/

OSG Summer School 2018

BEYOND THE BASIC DAG:
NODE-LEVEL MODIFIERS

32

OSG Summer School 2018

Default File Organization

HTCondor Manual: DAGMan Applications > DAG Input File

• What if you want to organize files
into other directories?

(dag_dir)/
A.sub B1.sub
B2.sub B3.sub
C.sub my.dag
(other job files)

JOB A A.sub
JOB B1 B1.sub
JOB B2 B2.sub
JOB B3 B3.sub
JOB C C.sub
PARENT A CHILD B1 B2 B3
PARENT B1 B2 B3 CHILD C

my.dag

OSG Summer School 2018

Node-specific File Organization
with DIR

HTCondor Manual: DAGMan Applications > DAG Input File

• DIR sets the submission directory of the node

(dag_dir)/
my.dag
A/ A.sub (A job files)
B/ B1.sub B2.sub

B3.sub (B job files)
C/ C.sub (C job files)

JOB A A.sub DIR A
JOB B1 B1.sub DIR B
JOB B2 B2.sub DIR B
JOB B3 B3.sub DIR B
JOB C C.sub DIR C
PARENT A CHILD B1 B2 B3
PARENT B1 B2 B3 CHILD C

my.dag

OSG Summer School 2018

PRE and POST scripts run on the
submit server, as part of the node

HTCondor Manual: DAGMan Applications > DAG Input File

• Use sparingly for lightweight work;
otherwise include work in node jobs

JOB A A.sub
SCRIPT POST A sort.sh
JOB B1 B1.sub
JOB B2 B2.sub
JOB B3 B3.sub
JOB C C.sub
SCRIPT PRE C tar_it.sh
PARENT A CHILD B1 B2 B3
PARENT B1 B2 B3 CHILD C

my.dag

OSG Summer School 2018

SCRIPT Arguments and
Argument Variables

DAGMan Applications > DAG Input File > SCRIPT
DAGMan Applications > Advanced Features > Retrying

$JOB: node name
$JOBID: cluster.proc
$RETURN: exit code of the node
$PRE_SCRIPT_RETURN: exit code of PRE script
$RETRY: current retry count
(more variables described in the manual)

JOB A A.sub
SCRIPT POST A checkA.sh my.out $RETURN
RETRY A 5

OSG Summer School 2018

RETRY failed nodes to overcome
transient errors

DAGMan Applications > Advanced Features > Retrying
DAGMan Applications > DAG Input File > SCRIPT

• Retry a node up to N times if the exit code is non-zero:
RETRY node_name N

• Note: Unnecessary for nodes (jobs) that can use max_retries
in the submit file

• See also: retry except for a particular exit code (UNLESS-
EXIT), or retry scripts (DEFER)

JOB A A.sub
RETRY A 5
JOB B B.sub
PARENT A CHILD B

Example:

OSG Summer School 2018

RETRY applies to whole node,
including PRE/POST scripts

DAGMan Applications > Advanced Features > Retrying
DAGMan Applications > DAG Input File > SCRIPT

• PRE and POST scripts are included in retries
• RETRY of a node with a POST script uses the exit code from

the POST script (not from the job)
- POST script can do more to determine node success, perhaps by

examining JOB output

SCRIPT PRE A download.sh
JOB A A.sub
SCRIPT POST A checkA.sh
RETRY A 5

Example:

OSG Summer School 2018

Best Control Achieved with One
Process per JOB Node

HTCondor Manual: DAGMan Applications > DAG Input File

• While submit files can
‘queue’ many processes, a
single process per submit
file is best for DAG JOBs
- Failure of any process in a

JOB node results in failure of
the entire node and
immediate removal of other
processes in the node.

- RETRY of a JOB node
retries the entire submit file.

...B1 B2 B3 BN

A

C

OSG Summer School 2018

Submit File Templates via VARS

DAGMan Applications > Advanced Features > Variable Values

• VARS line defines node-specific values that are passed into
submit file variables

VARS node_name var1=“value” [var2=“value”]

• Allows a single submit file shared by all B jobs, rather than one
submit file for each JOB.

B.sub
…
InitialDir = $(data)
arguments = $(data).csv $(opt)
…
queue

JOB B1 B.sub
VARS B1 data=”B1” opt=“10”
JOB B2 B.sub
VARS B2 data=“B2” opt=“12”
JOB B3 B.sub
VARS B3 data=“B3” opt=“14”

my.dag

OSG Summer School 2018

MODULAR ORGANIZATION OF
DAG COMPONENTS

41

OSG Summer School 2018

SPLICE groups of nodes to
simplify lengthy DAG files

DAGMan Applications > Advanced Features > DAG Splicing

JOB A A.sub
SPLICE B B.spl
JOB C C.sub
PARENT A CHILD B
PARENT B CHILD C

my.dag

JOB B1 B1.sub
JOB B2 B2.sub
…
JOB BN BN.sub

B.spl
...B1 B2 B3 BN

A

C

OSG Summer School 2018

Repeating DAG Components!!

https://confluence.pegasus.isi.edu/display/pegasus/LIGO+IHOPE

OSG Summer School 2018

Use nested SPLICEs with DIR for
repeating workflow components

my.dag

B.spl

JOB A A.sub DIR A
SPLICE B B.spl DIR B
JOB C C.sub DIR C
PARENT A CHILD B
PARENT B CHILD C

SPLICE B1 ../inner.spl DIR B1
SPLICE B2 ../inner.spl DIR B2
…
SPLICE BN ../inner.spl DIR BN

DAGMan Applications > Advanced Features > DAG Splicing

inner.spl
JOB 1 ../1.sub
JOB 2 ../2.sub
PARENT 1 CHILD 2

...

A

C

222

B.spl B1
1

B2 BN
11

OSG Summer School 2018

Use nested SPLICEs with DIR for
repeating workflow components

my.dag

B.spl

JOB A A.sub DIR A
SPLICE B B.spl DIR B
JOB C C.sub DIR C
PARENT A CHILD B
PARENT B CHILD C

SPLICE B1 ../inner.spl DIR B1
SPLICE B2 ../inner.spl DIR B2
…
SPLICE BN ../inner.spl DIR BN

DAGMan Applications > Advanced Features > DAG Splicing

inner.spl
JOB 1 ../1.sub
JOB 2 ../2.sub
PARENT 1 CHILD 2

my.dag
A/ A.sub (A job files)
B/ B.spl inner.spl

1.sub 2.sub
B1/ (1-2 job files)
B2/ (1-2 job files)
…
BN/ (1-2 job files)

C/ C.sub (C job files)

(dag_dir)/

OSG Summer School 2018

What if some DAG components
can’t be known at submit time?

If N can only
be determined
as part of the
work of A …

...B1 B2 B3 BN

A

C

OSG Summer School 2018

A SUBDAG within a DAG

DAGMan Applications > Advanced Features > DAG Within a DAG

my.dag

B.dag (written by A)
...B1 B2 B3 BN

A

C

JOB A A.sub
SUBDAG EXTERNAL B B.dag
JOB C C.sub
PARENT A CHILD B
PARENT B CHILD C

JOB B1 B1.sub
JOB B2 B2.sub
…
JOB BN BN.sub

Much More at the end of the
presentation and in the HTCondor

Manual!!!
https://research.cs.wisc.edu/htcondor/manual/current/2_Users_Manual.html

OSG Summer School 2018

YOUR TURN!

49

OSG Summer School 2018

DAGMan Exercises!
• Ask questions!
• Lots of instructors around

• Coming up:
- now–5:00pm Hands-On Exercises
- 5:00pm - on On Your Own

50

OSG Summer School 2018

More on SPLICE Behavior
• Upon submission of the outer DAG, nodes in the

SPLICE(s) are added by DAGMan into the overall
DAG structure.
- A single DAGMan job is queued with single set of status files.

• Great for gradually testing and building up a large
DAG (since a SPLICE file can be submitted by itself,
as a complete DAG).

• SPLICE lines are not treated like nodes.
- no PRE/POST scripts or RETRIES (though this may change)

DAGMan Applications > Advanced Features > DAG Splicing

OSG Summer School 2018

More on SUBDAG Behavior
• WARNING: SUBDAGs should only be used

(over SPLICES) when absolutely necessary!
- Each SUBDAG EXTERNAL has it’s own DAGMan

job running in the queue, on the submit server.
• SUBDAGs are nodes in the outer DAG (can

have PRE/POST scripts, retries, etc.)
• A SUBDAG is not submitted until prior nodes in

the outer DAG have completed.

DAGMan Applications > Advanced Features > DAG Within a DAG

OSG Summer School 2018

Use a SUBDAG to achieve a
Cyclic Component within a DAG

DAGMan Applications > Advanced Features > DAG Within a DAG

JOB A A.sub
SUBDAG EXTERNAL B B.dag
SCRIPT POST B iterateB.sh
RETRY B 1000
JOB C C.sub
PARENT A CHILD B
PARENT B CHILD C

my.dag

• POST script determines whether another
iteration is necessary; if so, exits non-zero

• RETRY applies to entire SUBDAG, which may
include multiple, sequential nodes

B

A

C

POST	script
RETRY

Other DAGMan Features

OSG Summer School 2018

Other DAGMan Features:
Node-Level Controls

DAGMan Applications > Advanced Features > Setting Priorities
DAGMan Applications > The DAG Input File > PRE_SKIP

• Set the PRIORITY of JOB nodes with:
PRIORITY node_name priority_value

• Use a PRE_SKIP to skip a node and mark it as
successful, if the PRE script exits with a specific exit
code:

PRE_SKIP node_name exit_code

OSG Summer School 2018

Other DAGMan Features:
Modular Control

DAGMan Applications > The DAG Input File > JOB
DAGMan Applications > Advanced Features > INCLUDE
DAGMan Applications > Advanced > Throttling by Category

• Append NOOP to a JOB definition so that its JOB process
isn’t run by DAGMan
- Test DAG structure without running jobs (node-level)
- Simplify combinatorial PARENT-CHILD statements (modular)

• Communicate DAG features separately with INCLUDE
- e.g. separate file for JOB nodes and for VARS definitions, as part of the same

DAG

• Define a CATEGORY to throttle only a specific subset of jobs

OSG Summer School 2018

Other DAGMan Features:
DAG-Level Controls

• Replace the node_name with ALL_NODES to apply a DAG
feature to all nodes of the DAG

• Abort the entire DAG if a specific node exits with a specific
exit code:

ABORT-DAG-ON node_name exit_code

• Define a FINAL node that will always run, even in the event
of DAG failure (to clean up, perhaps).

FINAL node_name submit_file

DAGMan Applications > Advanced > ALL_NODES
DAGMan Applications > Advanced > Stopping the Entire DAG
DAGMan Applications > Advanced > FINAL Node

