Character Table Isomorphisms

William Cocke
joint work with Steve Goldstein and Michael Stemper

Department of Mathematics
July 21, 2017

Some Philosophy

- Consider the equation $x^{2}=y$, where $y \in \mathbb{R}$. We know there are two solutions x and $-x$.

Some Philosophy

- Consider the equation $x^{2}=y$, where $y \in \mathbb{R}$. We know there are two solutions x and $-x$.
- If we write $\sqrt{9}$ we really mean 3 .

Some Philosophy

- Consider the equation $x^{2}=y$, where $y \in \mathbb{R}$. We know there are two solutions x and $-x$.
- If we write $\sqrt{9}$ we really mean 3 .
- What about $\sqrt{-1}$?

Group

- Groups give us a language to talk about basic properties of "isomorphism" and equivalence.
- Given an object T we can talk about equivalent objects to T.

Group

- Groups give us a language to talk about basic properties of "isomorphism" and equivalence.
- Given an object T we can talk about equivalent objects to T.

Group

- Groups give us a language to talk about basic properties of "isomorphism" and equivalence.
- Given an object T we can talk about equivalent objects to T.

Group

- Groups give us a language to talk about basic properties of "isomorphism" and equivalence.
- Given an object T we can talk about equivalent objects to T.

Characters

- Associated to each finite group is an object called a character table.
- The characters are the shadows of the group.

$$
\begin{aligned}
& \left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & 1 \\
2 & 0 & \zeta+\zeta^{4} & \zeta^{2}+\zeta^{3} \\
2 & 0 & \zeta^{2}+\zeta^{3} & \zeta+\zeta^{4}
\end{array}\right), \\
& \zeta^{5}=1 \text {, i.e., } \zeta=\mathrm{e}^{(2 \pi i / 5)} \text {. }
\end{aligned}
$$

Building a Database

- To help us understand what information about a group G is recoverable from its character table, we are building a database of small finite groups with the same character tables.
- We want to compare about 450,000,000 character tables.

Comparing Two Tables

- The character table of a group G has no canonical ordering, i.e., there is no canonical way of picking which column or row appears where.
- Given two n-by- n character tables M and N. We say $M=N$ if some permutation of the row and columns of M equals the table N.

Comparing Two Tables

$$
\left(\begin{array}{cccc}
1 & -1 & 1 & -1 \\
-1 & 1 & -1 & 1 \\
2 & -1 & 1 & -1 \\
-2 & 1 & -1 & 1
\end{array}\right)=?\left(\begin{array}{cccc}
1 & -1 & 1 & -1 \\
-1 & 1 & -1 & 1 \\
-2 & -1 & 1 & -1 \\
2 & 1 & -1 & 1
\end{array}\right)
$$

Comparing Two Tables

$$
\left(\begin{array}{cccc}
1 & -1 & 1 & -1 \\
-1 & 1 & -1 & 1 \\
2 & -1 & 1 & -1 \\
-2 & 1 & -1 & 1
\end{array}\right)=?\left(\begin{array}{cccc}
1 & -1 & 1 & -1 \\
-1 & 1 & -1 & 1 \\
-2 & -1 & 1 & -1 \\
2 & 1 & -1 & 1
\end{array}\right)
$$

Comparing Two Tables

$$
\left(\begin{array}{cccc}
1 & -1 & 1 & -1 \\
-1 & 1 & -1 & 1 \\
2 & -1 & 1 & -1 \\
-2 & 1 & -1 & 1
\end{array}\right)=?\left(\begin{array}{cccc}
1 & -1 & 1 & -1 \\
-1 & 1 & -1 & 1 \\
-2 & -1 & 1 & -1 \\
2 & 1 & -1 & 1
\end{array}\right)
$$

- We encode the table as a graph and run graph isomorphism.

Encoding as a Graph

- Consider the table:

$$
\left(\begin{array}{cccc}
1 & -1 & 1 & -1 \\
-1 & 1 & -1 & 1 \\
2 & -1 & 1 & -1 \\
-2 & 1 & -1 & 1
\end{array}\right)
$$

Encoding as a Graph

$$
\left(\begin{array}{cccc}
1 & -1 & 1 & -1 \\
-1 & 1 & -1 & 1 \\
2 & -1 & 1 & -1 \\
-2 & 1 & -1 & 1
\end{array}\right)
$$

Encoding as a Graph

$$
\left(\begin{array}{cccc}
1 & -1 & 1 & -1 \\
-1 & 1 & -1 & 1 \\
2 & -1 & 1 & -1 \\
-2 & 1 & -1 & 1
\end{array}\right)
$$

Encoding as a Graph

$$
\left(\begin{array}{cccc}
1 & -1 & 1 & -1 \\
-1 & 1 & -1 & 1 \\
2 & -1 & 1 & -1 \\
-2 & 1 & -1 & 1
\end{array}\right)
$$

rows

Encoding as a Graph

$$
\left(\begin{array}{cccc}
1 & -1 & 1 & -1 \\
-1 & 1 & -1 & 1 \\
2 & -1 & 1 & -1 \\
-2 & 1 & -1 & 1
\end{array}\right)
$$

rows

Encoding as a Graph

$$
\left(\begin{array}{cccc}
1 & -1 & 1 & -1 \\
-1 & 1 & -1 & 1 \\
2 & -1 & 1 & -1 \\
-2 & 1 & -1 & 1
\end{array}\right)
$$

rows

Method

- We run an intial hash:
- Given a group \rightarrow
- Construct table \rightarrow
- Create hash.

Method

- We run an intial hash:
- Given a group \rightarrow
- Construct table \rightarrow
- Create hash.
- Consider the table:

$$
\left(\begin{array}{cccc}
1 & -1 & 1 & -1 \\
-1 & 1 & -1 & 1 \\
2 & -1 & 1 & -1 \\
-2 & 1 & -1 & 1
\end{array}\right)
$$

Method

- We run an intial hash:
- Given a group \rightarrow
- Construct table \rightarrow
- Create hash.
- Consider the table:

$$
\left(\begin{array}{cccc}
1 & -1 & 1 & -1 \\
-1 & 1 & -1 & 1 \\
2 & -1 & 1 & -1 \\
-2 & 1 & -1 & 1
\end{array}\right)
$$

- The hash is the multiset of rows, where each is a multiset.

$$
\left\{\left\{-1^{2}, 1^{2}\right\}^{2},\left\{-1^{2}, 1,2\right\},\left\{-2,-1,1^{2}\right\}\right\}
$$

Method

- We run an intial hash:
- Given a group \rightarrow
- Construct Table \rightarrow
- Create Hash.
- SmallGroup $(512,64889569)$ gives

2dff0c4ba891481cd4fa6e2dc65f298c.

- SmallGroup(512,64889570) gives cd246c40463c53d07d13052186170424.
- SmallGroup $(512,54890438)$ gives 2dff0c4ba891481cd4fa6e2dc65f298c.

Method

- For each hash bucket run an all against all.
- Each bucket is mostly a single job.

Results

Computing row-equivalence classes

Size of Row-equivalent classes

Size of Row-equivalent classes

Acknowledgements

- We are grateful to the GAP and HTC-Condor community for project support and troubleshooting.

Acknowledgements

- Thank you for your time.

