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The	Dream	of	Molecular	
Computa#onal	Materials	Science	
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Understand,	Op#mize,	Discover	Materials	

Atomic	Understanding	 Computa#on	

hXp://www.teslasociety.com/nyautoshow.htm	

+	Experiment	

hXp://foreverfreshindoorgarden.wordpress.com/tag/compost-experiment/	

This	dream	is	being	realized	

This	is	a	major	transforma#on	
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Drivers	for	Transforma#on	
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Fundamental	theory	
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Modeling	methods	

Computa#onal	power	

Unprecedented		
transforma#on	in	

Understanding	

Design	
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A	Simple	but	Powerful	Message	

Computa/on	Is	Scalable	



A	Simple	but	Powerful	Message	

If	you	can	compute	it	once	

Then	with	some	automa/on	

You	can	compute	it	a	lot	
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Ab	Ini/o	Methods	and	Diffusion	in	
Solids	
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•  Diffusion	typically	occurs	by	jumps	
between	stable	sites	

•  Jump	rates	depends	on	aXempt	rates	
and	migra/on	barriers,	which	can	be	
calculated	ab	ini/o	

Rate =ν exp −Em kT( )

•  Diffusion	coefficients	(D)	can	be	
calculated	from	jump	rates	analy/cally	

•  D’s	are	cri/cal	for	design	of	Li	ion	
baXeries,	solid	oxide	fuel	cells,	
semiconductor	devices,	steels,	…	

BreX,	et	al,	Chem.	Soc.	Rev.	‘08	
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Cost	for	computers	($1000)	

High-Throughput	for	Dilute	Alloys	

Resource	needs	
•  ~50	viable	pure	elemental	

systems	in	each	structure	è	
~10,000	dilute	B	in	A	alloy-
structure	systems	(maybe	~5%	
known)	

•  1	system	takes	~20k/core-hours	
(~9	days	on	100	cores		(=	$20k))	

•  So	need	2×108	core-hours	or	
~23k	core-years,	1	postdoc.	

Determine	Dv*	for	A1-xBx	(x<<1)	for	all	elements	A,B	in	the	
common	(FCC,	BCC,	HCP,	Diamond)	crystal	structures	

6	years/$2m	



MAterials	Simula/on	Toolkit	(MAST)	

The	MAterials	Simula/on	Toolkit	(MAST)	is	an	automated	workflow	manager	and	
post-processing	tool	primarily	designed	to	perform	atomic	simula/on	calcula/ons	
for	diffusion	and	defect	workflows,	especially	using	density	func/onal	theory	as	
implemented	by	the	Vienna	Ab-ini/o	Simula/on	Package	(VASP).	

hXps://pypi.python.org/pypi/MAST		



MAST	Workflow	Management	
overview	
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Crontab	or	user	command	

Jobs	on	queue	

Workflow	
directories	with	
input	files	and	

metadata	

New	jobs	to	
queue	

Finished	workflows	
to	archive	

Evaluate	workflow	logic	
(DAG)	



Actual	diffusion	workflow	schema/c	

16	

32	steps		(not	all	steps	are	shown)	



Using	Open	Science	Grid	-	Problems	

•  Our	typical	unit	of	one	diffusion	coefficient	is	
~20k	CPU	hours	–	clearly	needs	to	be	broken	
up	for	OSG	

•  Single	ab	ini/o	calcula/ons	tend	to	be	
significantly	parallel	(~16-128	cores)	and	long	
(10-100h)	–	poor	match	for	OSG	

•  MAST	workflow	manager	not	ini/ally	
compa/ble	with	OSG	(MAST	runs	from	a	
managing	shared	home	directory)	



Using	Open	Science	Grid	-	Solu/ons	

•  Consider	the	smallest	steps	in	our	~20k	CPU	hour	workflow	and	
build	on	those	(single	step	calcula/ons).	

•  Restrict	to	specific	types	of	nodes	with	16-20	parallel	cores	
available	on	one	node.	

•  Chose	materials	carefully	to	be	fast	(few	electrons)	so	jobs	can	
usually	finish	within	24h	soO	limit	on	OSG	machines.	

•  Manage	workflow	differently	
–  Idea	1:		Adapted	MAST	to	CHTC	by	sending	all	tools	needed	on	the	

home	directory	(MAST,	related	directories,	python	language,	etc.)	to	
compute	node	with	job.		Worked,	but	had	to	send	a	lot	back	and	forth	
and	managing	the	directories	to	avoid	workflow	errors	(e.g.,	
overwri/ng)	was	very	hard.	

–  Idea	2:	Used	MAST	to	set	up	workflow	DAG	and	then	transcribed	to	
use	DAGMAN	workflow	manager	in	CONDOR	on	OSG.		BeXer!		But	
reduces	error	checking	ability.	



Open	Science	Grid	Usage	

•  Used	about	2.6m	CPU	hours	over	15m		
– About	1.5m	CPU	hours	dedicated	to	produc/on	
runs	for	diffusion	project.	

•  Ran	about	80	diffusion	coefficients.	
•  Integrated	with	tradi/onal	HPC	(XSEDE,	
NERSC)	for	larger	runs.	



Diffusion	Database	
hXp://diffusiondata.materialshub.org/		

hXps://www.engr.wisc.edu/making-massive-materials-data-sets-tools-accessible/		

•  Impurity	diffusion	of	X	in	host	H	
for	over	350	systems.	

•  Largest	diffusion	database	from	
a	single	group	in	the	world.		
New	science	and	cri/cal	design	
data.	

•  Data	disseminated	through	web	

–  Web	applica/on	for	plosng	
and	exploring	data	

–  All	data	available	from	figshare	
with	permanent	DOI.	

Wu,	et	al.,	Scien/fic	Data,	‘16	



Diffusion	Database	
hXp://diffusiondata.materialshub.org/		

hXps://www.engr.wisc.edu/making-massive-materials-data-sets-tools-accessible/		

Wu,	et	al.,	Scien/fic	Data,	‘16	

BCC	 FCC	

Very	different	trends	between	FCC	and	BCC	–	need	large	database	to	discover	this.	



Excess Formation Volume Computation 
•  Disordered binary mixtures of elements A and B for BCC and FCC crystal 

structures at various compositions (A, A0.75B0.25, A0. 5B0.5, A0.25B0.75, and B) 

•  A, B = Al, Co, Cu, Fe, Mg, Mo, Nb, Ni, and Ti 
9 pure elements, and a combined 36 unique elemental pairs. 
 

•  Use 3 different special quasi-random structures (SQS) for each 
crystal structure. 

•  Each SQS is optimized for all three mixtures (25%, 50%, and 75%). 
 
•  Calculate formation volume with DFT, spin-polarized: 

•  Iterative relaxation between ionic relaxation and volume relaxation. 
•  At least 3 repeats of the above iteration. 

•  Total number of calculations: 
•  (2 structures)×(36 pairs)×(3 SQS)×(3 compositions)×(6 DFT) =  
•  = 3888 DFT calculations. 



Excess Formation Volume Results 

Al-Cu Al-Ni Al-Co 
A0 -1.8600 -4.0792 -5.5367 

A1 1.4111 0.0389 -1.9511 

A2 0.6178 -1.6611 0.2356 

We are able to generate a 
large amount of accurate 

data and can extract valuable 
thermodynamic parameters. 

Excess volume - fit to 2nd order Redlich-Kister Polynomial 

Vexcess = A0XAXB + A1XAXB (XA − XB )+ A2XAXB (XA − XB )
2
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Summary	
•  We	have	developed	an	approach	

to	successfully	run	large	sets	of	
high-throughput	ab	ini/o	
calcula/ons	for	materials	design	
using	OSG.	

•  We	have	used	over	2.6m	CPU	
hours	over	the	last	~2years	to	
develop	the	world’s	largest	
diffusion	database	from	a	single	
research	group.	

•  Enables	many	other	materials	
proper/es	calcula/ons	which	we	
are	exploring,	e.g.,	alloy	
volumes,	oxide	defects,	etc.	…	



Thank You���
Any Questions?


