"High-throughput computing for materials databases and materials design".

Open Science Grid User School July 29, 2016 Univ. of Wisconsin – Madison, WI

High-throughput computing for materials databases and materials design

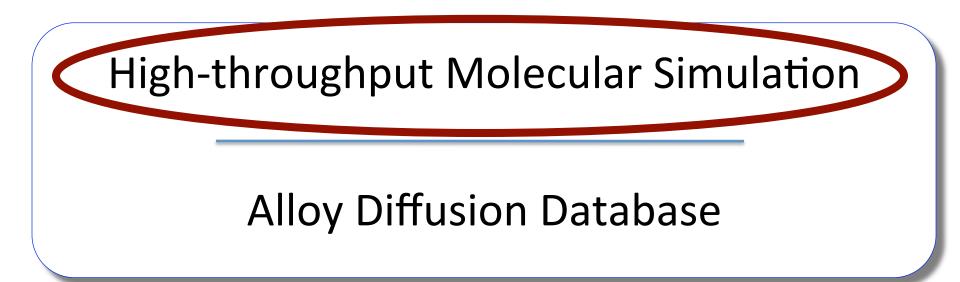
Dane Morgan

Tam Mayeshiba, Henry Wu, and many others ...

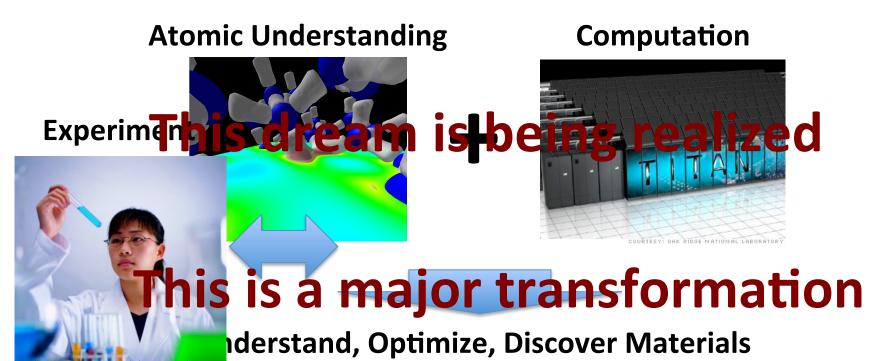
Open Science Grid User School July 29, 2016 Univ. of Wisconsin – Madison, WI

Funding Acknowledgements

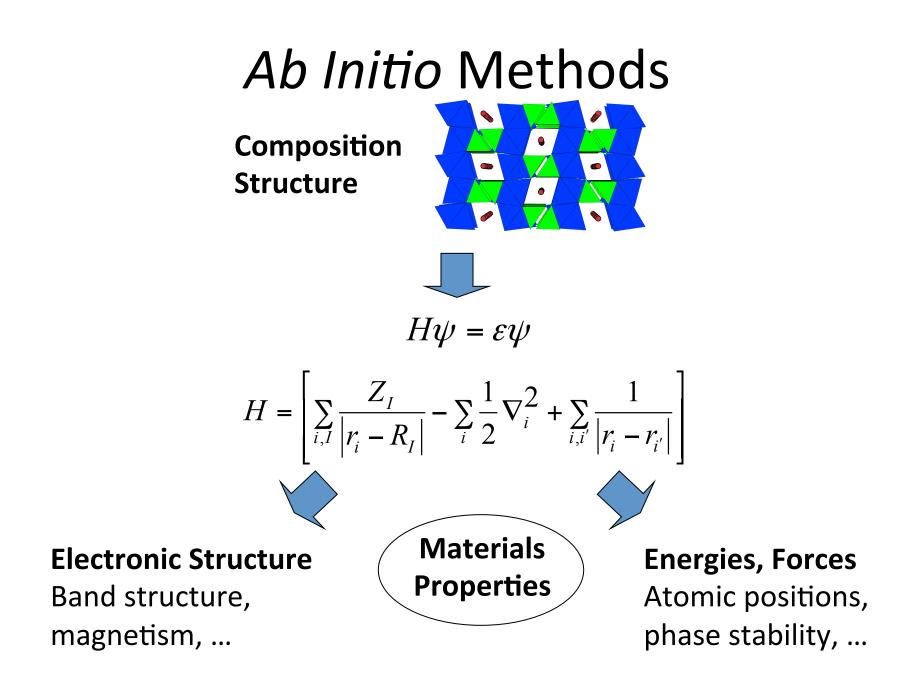
Software Infrastructure for Sustained Innovation (SI²) award No. 1148011


National Energy Research Scientific Computing Center

Outline


High-throughput Molecular Simulation

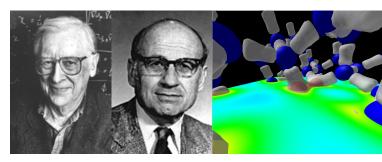
Alloy Diffusion Database


Outline

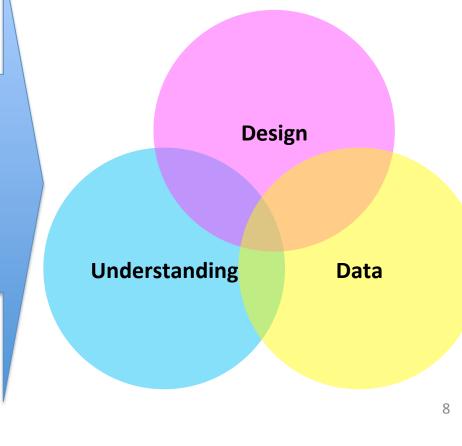
The Dream of Molecular Computational Materials Science

Drivers for Transformation

Fundamental theory


 $\hat{H} = \begin{vmatrix} -\sum_{I} \frac{1}{2} \nabla_{I}^{2} + \sum_{j,j'} \frac{Z_{j} Z_{j'}}{\left| R_{j} - R_{j'} \right|} + \sum_{i,j} \frac{Z_{j}}{\left| r_{i} - R_{j} \right|} \\ -\sum_{i} \frac{1}{2} \nabla_{i}^{2} + \sum_{i,i'} \frac{1}{\left| r_{i} - r_{i'} \right|} \end{vmatrix}$

Computational power

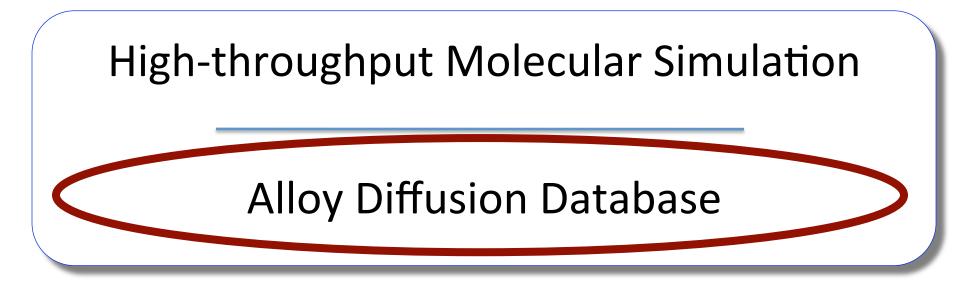


Modeling methods

Unprecedented transformation in

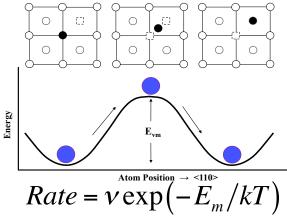
A Simple but Powerful Message

Computation Is Scalable

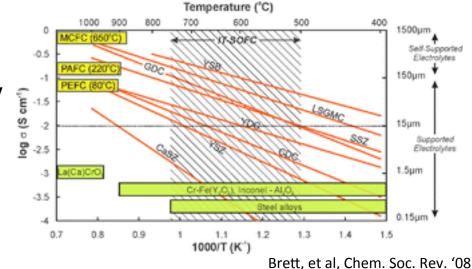

A Simple but Powerful Message

If you can compute it once

Then with some automation


You can compute it a lot

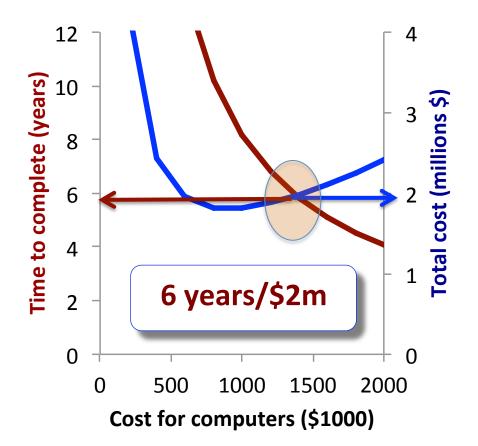
Outline



Ab Initio Methods and Diffusion in Solids

- Diffusion typically occurs by jumps between stable sites
- Jump rates depends on attempt rates and migration barriers, which can be calculated ab initio

- Diffusion coefficients (*D*) can be calculated from jump rates analytically
- D's are critical for design of Li ion batteries, solid oxide fuel cells, semiconductor devices, steels, ...

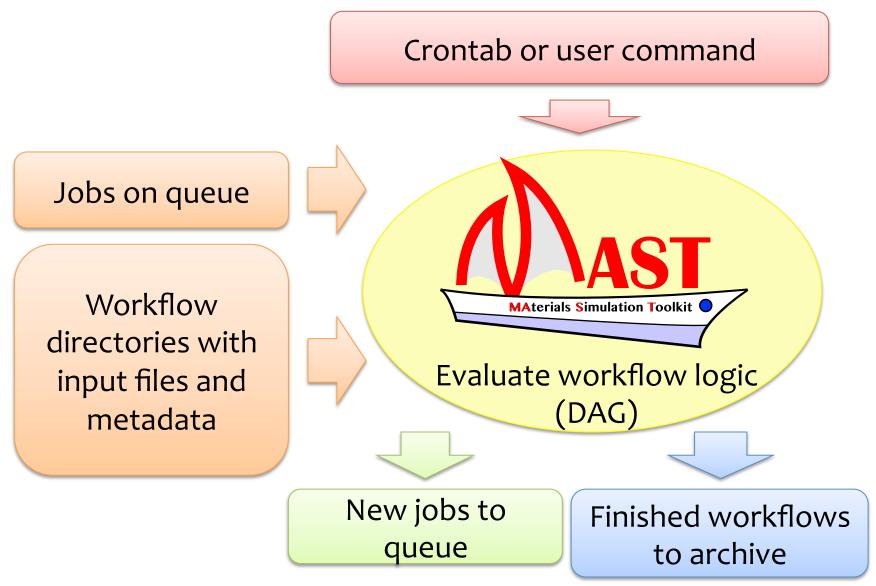


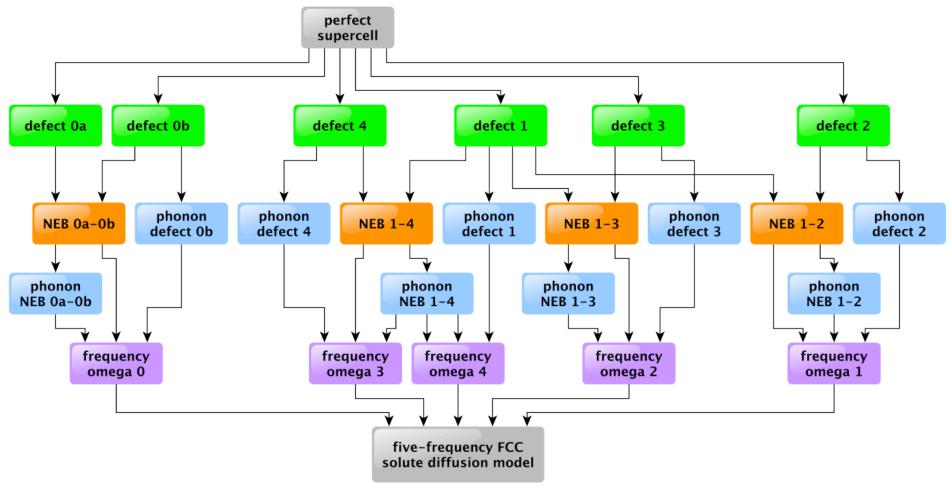
High-Throughput for Dilute Alloys

Determine D_v* for A_{1-x}B_x (x<<1) for all elements A,B in the common (FCC, BCC, HCP, Diamond) crystal structures

Resource needs

- ~50 viable pure elemental systems in each structure → ~10,000 dilute B in A alloystructure systems (maybe ~5% known)
- 1 system takes ~20k/core-hours (~9 days on 100 cores (= \$20k))
- So need 2×10⁸ core-hours or ~23k core-years, 1 postdoc.


MAterials Simulation Toolkit (MAST)


https://pypi.python.org/pypi/MAST

The MAterials Simulation Toolkit (MAST) is an automated workflow manager and post-processing tool primarily designed to perform atomic simulation calculations for diffusion and defect workflows, especially using density functional theory as implemented by the Vienna Ab-initio Simulation Package (VASP).

MAST Workflow Management

Actual diffusion workflow schematic

32 steps (not all steps are shown)

Using Open Science Grid - Problems

- Our typical unit of one diffusion coefficient is ~20k CPU hours – clearly needs to be broken up for OSG
- Single ab initio calculations tend to be significantly parallel (~16-128 cores) and long (10-100h) – poor match for OSG
- MAST workflow manager not initially compatible with OSG (MAST runs from a managing shared home directory)

Using Open Science Grid - Solutions

- Consider the smallest steps in our ~20k CPU hour workflow and build on those (single step calculations).
- Restrict to specific types of nodes with 16-20 parallel cores available on one node.
- Chose materials carefully to be fast (few electrons) so jobs can usually finish within 24h soft limit on OSG machines.
- Manage workflow differently
 - Idea 1: Adapted MAST to CHTC by sending all tools needed on the home directory (MAST, related directories, python language, etc.) to compute node with job. Worked, but had to send a lot back and forth and managing the directories to avoid workflow errors (e.g., overwriting) was very hard.
 - Idea 2: Used MAST to set up workflow DAG and then transcribed to use DAGMAN workflow manager in CONDOR on OSG. Better! But reduces error checking ability.

Open Science Grid Usage

• Used about 2.6m CPU hours over 15m

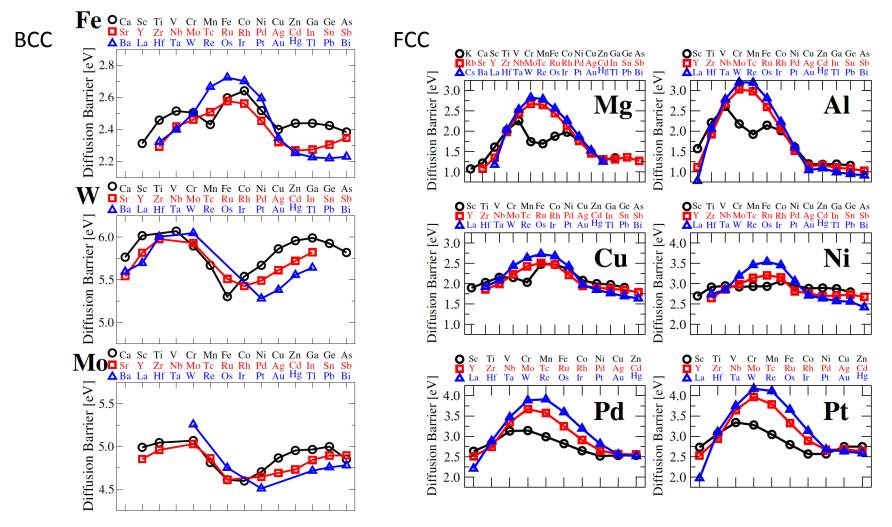
 About 1.5m CPU hours dedicated to production runs for diffusion project.

- Ran about 80 diffusion coefficients.
- Integrated with traditional HPC (XSEDE, NERSC) for larger runs.

Diffusion Database

http://diffusiondata.materialshub.org/

https://www.engr.wisc.edu/making-massive-materials-data-sets-tools-accessible/


- Impurity diffusion of X in host H for over 350 systems.
- Largest diffusion database from a single group in the world. New science and critical design data.
- Data disseminated through web
 - Web application for plotting and exploring data
 - All data available from figshare with permanent DOI.

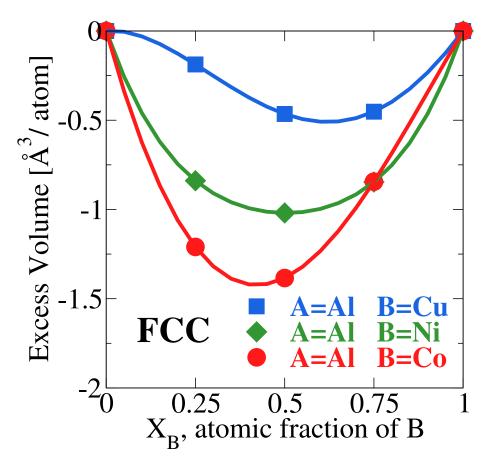
Zn X Cu X Mo X	Ni 🗙 Mn 🗙	
🗹 Check-All		
Host-Solute	A(^{cm²} / _{sec})	Q(eV)
🗹 Al - Cu	0.0207028	1.19609
🗸 Al - Mn	0.0771412	1.9213
🗸 Al - Mo	0.0802623	3.0262
🗹 Al - Ni	0.0258404	1.59959
🗸 Al - Zn	0.123356	1.18137
🗸 Mg, basal - Cu	0.655208	1.47741
🗹 Mg, basal - Mn	1.12569	1.6898
🗹 Mg, basal - Mo	1.60	1
🗹 Mg, basal - Ni	1.64	
🗹 Mg, basal - Zn	0.47 (r) 10 ⁻	8
	0.47 10 ⁻¹ 10 ⁻² 10 ⁻³ 10 ⁻⁴ 10 ⁻⁴	6
) 10 ^{−2}	4
		2
	e 10 ⁻⁴	
	n ion	
	nji Jij	8
	10 ⁻⁵	6
	10 ⁻⁶	
		0 1 inf 100

Diffusion Database

http://diffusiondata.materialshub.org/

https://www.engr.wisc.edu/making-massive-materials-data-sets-tools-accessible/

Very different trends between FCC and BCC – need large database to discover this.

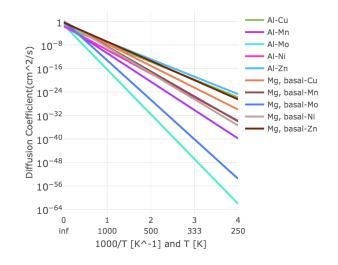

Wu, et al., Scientific Data, '16

Excess Formation Volume Computation

- Disordered binary mixtures of elements A and B for **BCC** and **FCC** crystal structures at various compositions (A, A_{0.75}B_{0.25}, A_{0.5}B_{0.5}, A_{0.25}B_{0.75}, and B)
- A, B = Al, Co, Cu, Fe, Mg, Mo, Nb, Ni, and Ti
 9 pure elements, and a combined 36 unique elemental pairs.
- Use **3 different special quasi-random structures (SQS)** for each crystal structure.
 - Each SQS is optimized for all **three mixtures** (25%, 50%, and 75%).
- Calculate formation volume with DFT, spin-polarized:
 - Iterative relaxation between ionic relaxation and volume relaxation.
 - At least 3 repeats of the above iteration.
- Total number of calculations:
 - (2 structures)×(36 pairs)×(3 SQS)×(3 compositions)×(6 DFT) =
 - = **3888 DFT calculations**.

Excess Formation Volume Results

Excess volume - fit to 2nd order Redlich-Kister Polynomial $V_{excess} = A_0 X_A X_B + A_1 X_A X_B (X_A - X_B) + A_2 X_A X_B (X_A - X_B)^2$


	Al-Cu	Al-Ni	Al-Co
A ₀	-1.8600	-4.0792	-5.5367
A_1	1.4111	0.0389	-1.9511
A ₂	0.6178	-1.6611	0.2356

We are able to generate a large amount of accurate data and can extract valuable thermodynamic parameters.

Summary

- We have developed an approach to successfully run large sets of high-throughput ab initio calculations for materials design using OSG.
- We have used over 2.6m CPU hours over the last ~2years to develop the world's largest diffusion database from a single research group.
- Enables many other materials properties calculations which we are exploring, e.g., alloy volumes, oxide defects, etc. ...

Mg, basal 🗙 Al 🗶					
Zn × Cu × Mo × Ni × Mn ×					
🗹 Check-All					
Host-Solute	A(^{cm²} / _{sec})	Q(eV)			
🗹 Al - Cu	0.0207028	1.19609			
🗹 Al - Mn	0.0771412	1.9213			
🗹 Al - Mo	0.0802623	3.0262			
🗹 Al - Ni	0.0258404	1.59959			
🗹 Al - Zn	0.123356	1.18137			
🗹 Mg, basal - Cu	0.655208	1.47741			
🗹 Mg, basal - Mn	1.12569	1.6898			
🗹 Mg, basal - Mo	1.66772	2.66878			
🗹 Mg, basal - Ni	1.64189	1.76667			
🗹 Mg, basal - Zn	0.479027	1.29902			

Thank You Any Questions?