
Workflows: from Development
to Automated Production

Friday morning, 10:30 am

Christina Koch ckoch5@wisc.edu
Research Computing Facilitators
University of Wisconsin - Madison

OSG User School 2016

OR, GETTING THE MOST OUT
OF WORKFLOWS, PART 2

2

OSG User School 2016

Building a Good Workflow

1.  Draw out the general workflow
2.  Define details (test ‘pieces’ with HTCondor jobs)
-  divide or consolidate ‘pieces’
-  determine resource requirements
-  identify steps to be automated or checked

3.  Build it modularly; test and optimize
4.  Scale-up gradually
5.  Make it work consistently
6.  What more can you automate or error-check?

(And remember to document!)

3

OSG User School 2016

process ‘99’
(filter output)

To Get Here …

4

(special transfer)
file prep and split

(POST-RETRY)

process ‘0’
(filter output)

combine,
transform results

(POST-RETRY)

. . .

 1 GB RAM
 2 GB Disk
 1.5 hours

100 MB RAM
500 MB Disk
 40 min
(each)

300 MB RAM
 1 GB Disk
 15 min

(PRE)
(POST-RETRY) (POST-RETRY)

OSG User School 2016

process ‘99’
(filter output)

start with the HTC “step” in the
DAG…

5

process ‘0’
(filter output) . . .

OSG User School 2016

process ‘99’
(filter output)

… then add in another step …

6

process ‘0’
(filter output)

combine, assess
results

. . .

OSG User School 2016

process ‘99’
(filter output)

… and another step …

7

 prep conditions
and/or split data

process ‘0’
(filter output)

combine, assess
results

. . .

OSG User School 2016

and End Up with This?

8

DATA

 ?

OSG User School 2016

Building a Good Workflow

1.  Draw out the general workflow
2.  Define details (test ‘pieces’ with HTCondor jobs)
-  divide or consolidate ‘pieces’
-  determine resource requirements
-  identify steps to be automated or checked

3.  Build it modularly; test and optimize
4.  Scale-up gradually
5.  Make it work consistently
6.  What more can you automate or error-check?

(And remember to document!)

9

OSG User School 2016

Scaling Workflows

•  Your (“small”) DAG runs! Now what?
- Need to make it run full scale

10

to the
moon!

OSG User School 2016

Scaling Up: OSG Rules of Thumb

•  CPU (single-threaded)
- Best jobs run between 10 min and 10 hrs

(Upper limit somewhat soft)

•  Data (disk and network)
- Keep scratch working space < 20 GB
-  Intermediate needs (/tmp?)
- Use alternative data transfer appropriately

•  Memory
- Closer to 1 GB than 8 GB

11

OSG User School 2016

Testing, Testing, 1-2-3 …

•  ALWAYS test a subset after making
changes
- How big of a change needs retesting?

•  Scale up gradually

•  Avoid making problems for others (and for
yourself)

12

OSG User School 2016

Scaling Up - Things to Think About

•  More jobs:
- 100-MB per input files may be fine for 10 or

100 jobs, but not for 1000 jobs. Why?
- most submit queues will falter beyond ~10,000

total jobs
•  Larger files:
- more disk space, perhaps more memory
- potentially more transfer and compute time

Be kind to your submit and execute nodes
and to fellow users!

13

OSG User School 2016

Solutions for More Jobs

•  Use a DAG to throttle the number of idle
or queued jobs (“max-idle” and/or
“DAGMAN CONFIG”)

•  Add more resiliency measures
- “RETRY” (works per-submit file)

- “SCRIPT POST” (use $RETURN, check output)

•  Use SPLICE, VAR, and DIR for
modularity/organization

14

OSG User School 2016

Solutions for Larger Files

•  File manipulations
- split input files to send minimal data with

each job
- filter input and output files to transfer only

essential data
- use compression/decompression

•  Follow file delivery methods from
yesterday for files that are still “large”

15

OSG User School 2016

Self-Checkpointing

Solution for long jobs and “shish-kebabs”
1.  Changes to your code
-  Periodically save information about

progress to a new file (every hour?)
-  At the beginning of script:

§  If progress file exists, read it and start from
where the program (or script) left off

§  Otherwise, start from the beginning

2.  Change to submit file:
when_to_transfer_output	
 =	
 ON_EXIT_OR_EVICT	

16

OSG User School 2016

Building a Good Workflow

1.  Draw out the general workflow
2.  Define details (test ‘pieces’ with HTCondor jobs)
-  divide or consolidate ‘pieces’
-  determine resource requirements
-  identify steps to be automated or checked

3.  Build it modularly; test and optimize
4.  Scale-up gradually
5.  Make it work consistently
6.  What more can you automate or error-check?

(And remember to document!)

17

OSG User School 2016

Robust Workflows

•  Your DAG runs at scale! Now what?
- Need to make it run everywhere, everytime
- Need to make it run unattended
- Need to make it run when someone else tries

18

OSG User School 2016

Make It Run Everywhere

•  What does an OSG machine
have?
- Prepare for very little

•  Bring as much as possible
with you, including:
- executable
-  likely, more of the

“environment”

19

OSG User School 2016

The expanding onion

•  Laptop (1 machine)
- You control everything!

•  Local cluster (1000 cores)
- You can ask an admin nicely

•  Campus (5000 cores)
-  It better be important/generalizable

•  OSG (50,000 cores)
- Good luck finding the pool admins

20

OSG User School 2016

Make It Work Everytime

•  What could possibly go wrong?
- Eviction
- Non-existent
 dependencies
- File corruption
- Performance surprises

§ Network
§ Disk
§ …

- Maybe even a bug in your code
21

OSG User School 2016

Performance Surprises

One bad node can ruin your whole day

•  “Black Hole” machines
- Depending on the error, email OSG!

•  REALLY slow machines
- use periodic_hold / periodic_release

22

OSG User School 2016

Error Checks Are Essential

If you don’t check, it will happen…

•  Check expected file existence, and repeat
with a finite loop or number of retries
- better yet, check rough file size too

•  Advanced:
- RETRY for specific error codes from wrapper
- “periodic_release” for specific hold reasons

23

OSG User School 2016

What to do if a check fails

•  Understand something about failure

•  Use DAG “RETRY”, when useful

•  Let the rescue dag continue…

24

OSG User School 2016

Make It Run(-able) for Someone Else

•  Automation is a step towards making
your research reproducible by someone
else
- Work hard to make this happen.
-  It’s their throughput, too.

•  Can benefit those who want to do
similar work

25

OSG User School 2016

Building a Good Workflow

1.  Draw out the general workflow
2.  Define details (test ‘pieces’ with HTCondor jobs)
-  divide or consolidate ‘pieces’
-  determine resource requirements
-  identify steps to be automated or checked

3.  Build it modularly; test and optimize
4.  Scale-up gradually
5.  Make it work consistently
6.  What more can you automate or error-check?

(And remember to document!)

26

OSG User School 2016

Automate All The Things

•  Well, not really, but kind of …
•  Really: What is the minimal number of

manual steps necessary?
even 1 might be too many; zero is perfect!

•  Consider what you get out of automation
-  time savings (including less ‘babysitting’ time)
- reliability and reproducibility

27

OSG User School 2016

Automation Trade-offs

28 http://xkcd.com/1205/

OSG User School 2016

Make It Work Unattended

•  Remember the ultimate goal:
Automation! Time savings!

•  Potential things to automate:
- Data collection
- Data preparation and staging
- Submission (condor cron)
- Analysis and verification
- LaTeX and paper submission J

29

OSG User School 2016

Building a Good Workflow

1.  Draw out the general workflow
2.  Define details (test ‘pieces’ with HTCondor jobs)
-  divide or consolidate ‘pieces’
-  determine resource requirements
-  identify steps to be automated or checked

3.  Build it modularly; test and optimize
4.  Scale-up gradually
5.  Make it work consistently
6.  What more can you automate or error-check?

(And remember to document!)

30

OSG User School 2016

Documentation at Multiple Levels

•  In job files: comment lines
- submit files, wrapper scripts, executables

•  In README files
- describe file purposes
- define overall workflow, justifications

•  In a document!
- draw the workflow, explain the big picture

31

OSG User School 2016

PARTING THOUGHTS

32

OSG User School 2016

Make It Run Faster? Maybe.

Throughput, throughput, throughput
- Resource reductions (match more slots!)
- Wall-time reductions

§  if significant per workflow
§ Why not per job?

Think in orders of magnitude:
- Say you have 1000 hour-long jobs that are

matched at a rate of 100 per hour …

Waste the computer’s time, not yours.
33

OSG User School 2016

If HTC workflows were a test…

•  20 points for finishing at all
•  10 points for the right answer
•  1 point for every error check
•  1 point per documentation line

Out of 100 points? 200 points?

34

finishing

right

error
checks

&
documen-

tation

OSG User School 2016

Getting Research Done

•  End goal: getting the research done
•  Hopefully you now have the tools to get

the most out of:
- Computing: which approach and set of

resources suit your problem?
- High Throughput computing: optimize

throughput, use portable data and software
- Workflows: test, automate and scale

35

OSG User School 2016

Questions?

•  Now: Exercises 2.1 (2.2 Bonus)
•  Next:
- HTC Showcase!

36

