Open Science Grid

Workflows: from Development
to Automated Production

Friday morning, 10:30 am

Christina Koch ckochS5@wisc.edu
Research Computing Facilitators
University of Wisconsin - Madison

pen Science Grid

OR, GETTING THE MOST OUT
OF WORKFLOWS, PART 2

N

- —

I Building a Good Workflow

Open Science Grid

1. Draw out the general workflow

2. Define details (test ‘pieces’ with HTCondor jobs)
— divide or consolidate ‘pieces’
— determine resource requirements
- identify steps to be automated or checked

3. Build it modularly; test and optimize

4. Scale-up gradually
5. Make it work consistently
6. What more can you automate or error-check?

(And remember to document!)

= To Get Here ...
pen Science Grid
1 GB RAM
2 GB Disk
1.5 hours

(POST-RETRY)

100 MB RAM
500 MB Disk
40 min

(each)

(POST-RETRY (POST-RETRY)

300 MB RAM
1 GB Disk
15 min

(POST-RETRY)

OSG User School 2016

== start with the HTC “step” in the
Open Science Grid D AG o

OSG User School 2016

//\\

== ... then add in another step ...

Open Science Grid

OSG User School 2016

== ... and another step ...

Open Science Grid

OSG User School 2016

= and End Up with This?

Open Science Grid

DATA

OSG User School 2016

N

- —

I Building a Good Workflow

Open Science Grid

1. Draw out the general workflow

2. Define details (test ‘pieces’ with HTCondor jobs)
— divide or consolidate ‘pieces’
— determine resource requirements
- identify steps to be automated or checked

3. Build it modularly; test and optimize

4. Scale-up gradually
5. Make it work consistently
6. What more can you automate or error-check?

(And remember to document!)

PN

= Scaling Workflows

Open Science Grid

e Your ("small”) DAG runs! Now what?
— Need to make it run full scale

OSG User School 2016

10

N

=— Scaling Up: OSG Rules of Thumb

Open Science Grid

e CPU (single-threaded)

— Best jobs run between 10 min and 10 hrs
(Upper limit somewhat soft)

e Data (disk and network)
— Keep scratch working space < 20 GB
— Intermediate needs (/tmp?)
- Use alternative data transfer appropriately

e Memory
— Closer to 1 GB than 8 GB

= Testing, Testing, 1-2-3 ...

Open Science Grid

e ALWAYS test a subset after making
changes

- How big of a change needs retesting?
e Scale up gradually

* Avoid making problems for others (and for
yourself)

=— Scaling Up - Things to Think About

 More jobs:

- 100-MB per input files may be fine for 10 or
100 jobs, but not for 1000 jobs. Why?

— most submit queues will falter beyond ~10,000
total jobs

e Larger files:
— more disk space, perhaps more memory
— potentially more transfer and compute time

Be kind to your submit and execute nodes
and to fellow users!

N

== Solutions for More Jobs

Open Science Grid

e Use a DAG to throttle the number of idle
or queued jobs (“max-idle” and/or
‘DAGMAN CONFIG")

e Add more resiliency measures
- "RETRY” (works per-submit file)
- “SCRIPT POST” (use $RETURN, check output)

 Use SPLICE, VAR, and DIR for
modularity/organization

N

= Solutions for Larger Files

Open Science Grid

e File manipulations

— split input files to send minimal data with
each job

— filter input and output files to transfer only
essential data

— use compression/decompression

e Follow file delivery methods from
yesterday for files that are still “large”

N

- —

= Self-Checkpointing

Open Science Grid

Solution for long jobs and “shish-kebabs”

1. Changes to your code

— Periodically save information about
progress to a new file (every hour?)

— At the beginning of script:

= |f progress file exists, read it and start from
where the program (or script) left off

= QOtherwise, start from the beginning

2. Change to submit file:
when_to transfer_output = ON_EXIT OR _EVICT

N

- —

I Building a Good Workflow

Open Science Grid

1. Draw out the general workflow

2. Define details (test ‘pieces’ with HTCondor jobs)
— divide or consolidate ‘pieces’
— determine resource requirements
- identify steps to be automated or checked

3. Build it modularly; test and optimize

4. Scale-up gradually

5. Make it work consistently

6. What more can you automate or error-check?

(And remember to document!)

7

> -~

sl Robust Workflows

Open Science Grid

e Your DAG runs at scale! Now what?
— Need to make it run everywhere, everytime
— Need to make it run unattended
- Need to make it run when someone else tries

Self-Operating Napkin

=
‘a" D 1 Z J K
K B r ; : ! 7
!) H]
{ :

n

l?t
/

T

= -~

o Make It Run Everywhere

e \What does an OSG machine
have?

- Prepare for very little
 Bring as much as possible

with you, including:

— executable

- likely, more of the
“environment”

OSG User School 2016

19

N

= The expanding onion

Open Science Grid

e Laptop (1 machine)
— You control everything!

e Local cluster (1000 cores)
—You can ask an admin nicely

e Campus (5000 cores)
— It better be important/generalizable

e OSG (50,000 cores)

— Good luck finding the pool admins

7

> -~

= Make It Work Everytime

Open Science Grid

* \What could possibly go wrong?
— Eviction
— Non-existent
dependencies
— File corruption

— Performance surprises

= Network
= Disk

- Maybe even a bug in your code

= Performance Surprises

Open Science Grid

One bad node can ruin your whole day

« “Black Hole” machines
— Depending on the error, email OSG!

e REALLY slow machines
— use periodic_hold / periodic release

<< Error Checks Are Essential

Open Science Grid

If you don’t check, it will happen...

e Check expected file existence, and repeat
with a finite loop or number of retries

— better yet, check rough file size too

e Advanced:
— RETRY for specific error codes from wrapper
- “periodic_release” for specific hold reasons

What to do if a check fails

e Understand something about failure

e Use DAG “RETRY”, when useful

e Let the rescue dag continue...

indows Advanced Options Menu
lease select an option:

Safe Mode
Safe Mode with Networking
Safe Mode with Command Prompt

Enable Boot Logging

Enable VUGA Mode

Last Knoun Good Configuration (your most recent settings that worked)
Directory Services Restore Mode (Windows domain controllers only)
Debugging Mode

Disable automatic restart on system failure

Start Windows Normally
Reboot
Return to 0S Choices Menu

se the up and down arrow keys to move the highlight to your choice.

—~— . Make It Run(-able) for Someone Else

 Automation is a step towards making

your research reproducible by someone
else

- Work hard to make this happen.
— It's their throughput, too.

e Can benefit those who want to do
similar work

N

- —

I Building a Good Workflow

Open Science Grid

1. Draw out the general workflow

2. Define details (test ‘pieces’ with HTCondor jobs)
— divide or consolidate ‘pieces’
— determine resource requirements
- identify steps to be automated or checked

Build it modularly; test and optimize

Scale-up gradually

Make it work consistently

. What more can you automate or error-check?

o AW

(And remember to document!)

N

== Automate All The Things

Open Science Grid

e Well, not really, but kind of ...

e Really: What is the minimal number of
manual steps necessary?

even 1 might be too many; zero is perfect!

e Consider what you get out of automation
- time savings (including less ‘babysitting’ time)
— reliability and reproducibility

7

= -~

S

Open Science Grid

Automation Trade-offs

HOW LONG CAN YOU WORK ON MAKING A ROUTINE TASK MORE

EFFCIENT BEFORE YOURE SPENDING MORE TiME: THAN YOU SAVE?

(PEROSS FIVE YEARS)
HOW OFTEN YOU DO THE TRSK
SD/W ey DALY WEEKLY MONFLY Y’EPRLY
| 1.9eon0 ([T oar | 2moues [301 A LS
5 seons | (5] oAvs | 12 vooks | 2moves | 21 | S| 25
30 SECONDS | I g |[3] 0P |12 ouks | 2 voues | 3O |\ 2
0w 4 v (BT T oave ([T oA | 4 oues | LHoR | O
T 5 MNUTES | MoNTes| T ot (B ofvs| 21 vowes | Soves | 2>
SH%Y_-FE&WIES 6m&%@m 1| DAY | 2 Hours
1 HOR 10 vots| 2 mows | [10]oAvs |2 | DAY | 5 Howrs
6 HOURS 2 vowts (S Leea ([1] 0AY
- [Dow Buleexs|[5]0A15

OSG User School 2016

http://xkcd.com/1205/

28

PN

= Make It Work Unattended

Open Science Grid

« Remember the ultimate goal:
Automation! Time savings!

* Potential things to automate:
— Data collection
— Data preparation and staging
— Submission (condor cron)
— Analysis and verification
- LaTeX and paper submission ©

OSG User School 2016

29

N

- —

I Building a Good Workflow

Open Science Grid

1. Draw out the general workflow

2. Define details (test ‘pieces’ with HTCondor jobs)
— divide or consolidate ‘pieces’
— determine resource requirements
- identify steps to be automated or checked

3. Build it modularly; test and optimize

4. Scale-up gradually
5. Make it work consistently
6. What more can you automate or error-check?

(And remember to document!)

N

= Documentation at Multiple Levels

Open Science Grid

e |In job files: comment lines
— submit files, wrapper scripts, executables

 In README files

— describe file purposes
— define overall workflow, justifications

* |n a document!
— draw the workflow, explain the big picture

pen Science Grid

PARTING THOUGHTS

N

= Make It Run Faster? Maybe.

Open Science Grid

hroughput, throughput, throughput
— Resource reductions (match more slots!)
— Wall-time reductions
= if significant per workflow
= Why not per job?
Think in orders of magnitude:

— Say you have 1000 hour-long jobs that are
matched at a rate of 100 per hour ...

Waste the computer’s time, not yours.

= If HTC workflows were a test...

Open Science Grid

o 20 points for finishing at all

e 10 points for the right answer
e 1 point for every error check

e 1 point per documentation line

Out of 100 points? 200 points?

OSG User School 2016

error
checks

documen-
tation

34

N

== Getting Research Done

Open Science Grid

 End goal: getting the research done

e Hopefully you now have the tools to get
the most out of:

— Computing: which approach and set of
resources suit your problem?

— High Throughput computing: optimize
throughput, use portable data and software
- Workflows: test, automate and scale

N

= Questions?

Open Science Grid

 Now: Exercises 2.1 (2.2 Bonus)

e Next:
- HTC Showcase!

