Open Science Grid

Backpacking with Code:
Software Portability for DHTC

Wednesday morning, 9:00 am

Christina Koch (ckochS@wisc.edu)
Research Computing Facilitator
University of Wisconsin - Madison

-~

L~ -

= Goals for this session

Open Science Grid

e Understand the basics of...
— how software works
— where software is installed
- how software is accessed and run

e ...and the implications for DH

C

e Describe what it means to make software

“portable”

e |earn about and use two software portability

techniques:

— Build portable code
— Use wrapper scripts

7

= -~

S

Open Science Grid

Motivation

running a piece of software is like cooking a
meal in a kitchen

= The problem

Open Science Grid

Running
software on
your own
computer =
cooking in your
own kitchen

OSG User School 2016

-~

= The problem

Open Science Grid

In your own kitchen:

 You have all the pots and pans you
need

 You know where everything is
e You have access to all the cupboards

On your own computer:

e The software is installed, you know
where it is, and you can access it.

Running on a shared computer =
cooking in someone else’s kitchen.

-~

Nl The problem

Open Science Grid

In someone else’s kitchen:

 You are guaranteed some things...
e ...but others may be missing

* You don’'t know where everything is
e« Some of the cupboards are locked

On a shared computer:

e Your software may be missing, un-
findable, or inaccessible.

T

= ~

= The solution

Open Science Grid

 Think like a
backpacker

e Take your software
with you
- Install anywhere
— Run anywhere

e This is called making
software portable

= Software

e How do we make software portable?

* First we have to understand:
- What software is and how it works
- Where software lives
- How we run it

~ How software works

e A software program can be thought of as a list of
instructions or tasks that can be run on an
computer

e A launched program that is running on your
computer is managed by your computer's operating
system (OS)

e The program may make requests (access this
network via wireless, save to disk, use another
processor) that are mediated by the OS

e A single program may also depend on other
programs besides the OS

T

= How software works®
Program Operating
(software, code, runs System

executable, binary) own

) (\3@ J translates
makes |

program’s

S | request
launches to /
monitors e]
running r—
E rograms
D) Running Program Hardware
|54 (processors,

(process, instance) memory, disk)

-~

== How software works

Open Science Grid

Implications for DHTC:

o Software must be able to run on target
operating system (usually Linux)

 Request specific OS as job requirement

 Know what else your software depends
on

T

—~— Location, location, location

Open Science Grid

e \Where can software be installed?

usr | [lib | [prograins| | home |

“bin | [local /@i [W@

system locations

local locations

OSG User School 2016

13

T
- -~

~— Location, location, location

Open Science Grid

e \Who can install the software?

[usr} lib [progra \ [home}

“bin | [local /@i [W@

Usually requires
administrative privileges

Owner of the
directory

OSG User School 2016 14

T

~— Location, location, location

Open Science Grid

e \Who can access the software?

[usr} lib [progM [ho 1

“bin | [local /@i [W@

Anyone on the system

The local user can
control who has access

OSG User School 2016 15

~— Location, location, location

Open Science Grid

Implications for DHTC:

e Software MUST be able to install to a
local location

o Software must be installable without
administrative privileges

N

L~ -~

—~— .. Location and running software

Instead of graphic interface... command line

00 @ ckoch — bash — 68x17
Al [~1$ /Applications/Calculator.app/Contents/Mac0S/Calculator
= Q

aaaaaaaaaaaaa

* All DHTC jobs must use software that can
be run from the command line.

* TJo run a program on the command line, your
computer needs to know where the program
IS located in your computer’s filesystem.

~— Common command line programs

Open Science Grid

e Common command pre

/Users/ckoch

line programs like 'Is i
and pwd arein a
system location called e

[~1$ which 1s

b Tal /bin/1
/bl n [~32 ezho $PATH

/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin:/opt/X11/b

in:/usr/texbin

e Your computer knows p&
their location because

“/bin” is included in
your PATH"

 The PATH is a list of locations to look for programs

~— .. Other programs on command line

Open Science Grid

e Other programs may be installed in locations not
listed in the PATH. You can access them by:

Adding their location to Using an relative or absolute
the PATH, then running path to the software

(JOX J 7 ckoch — bash — 53x13 [XOX) & ckoch — bash — 53x13

[~1$ export PATH=/Users/ckoch/Code/python/bin/:$PATH [~1$ Code/python/bin/python2.7 --version

[~1$ echo $PATH Python 2.7.7
/Users/ckoch/Code/python/bin/:/usr/local/bin:/usr/bin [~1$ /Users/ckoch/Code/python/bin/python2.7 --version

:/bin:/usr/sbin:/sbin:/opt/X11/bin:/usr/texbin Python 2.7.7
[~1$ python2.7 --version [~]1$

Python 2.7.7

[~1%

-~

= Command line

Open Science Grid

Implications for DHTC:

o Software must have ability to be run from
the command line

 Multiple commands are okay, as long as
they can be executed in order within a job

e There are different ways to “find” your
software on the command line: relative
path, absolute path, and PATH variable

-~

~— Portability requirements

Open Science Grid

Based on the previous slides, we now know that in
order to make software portable for DHTC, the

software:

e Must work on target operating system (probably
Linux)

e Must be accessible to your job (placed or
installed in job’s working directory)

 Must be able to run without administrative
privileges

e Must be able to run from the command line,
without any interactive input from you

~— Returning to our scenario:

Open Science Grid

In a DHTC situation, we are:

e Using someone else’'s computer
— Software may not be installed
— The wrong version may be installed
- We can't find/run the installed software

Therefore:

 \We need to bring along and install/run
software ourselves

-~

= Portability methods

Open Science Grid

here are two primary methods to make
code portable:
 Use a single compiled binary

— Typically for code written in C, C++ and
Fortran

* “Install” with every job
— Can’t be compiled into a single binary
- Interpreted languages (Matlab, Python, R)

pen Science Grid

Method 1
USE A COMPILED BINARY

T

= -~

S

Open Science Grid What is compilation?

Source code

511168
. 181118
et nten T e . . GERE |
| o T compiled + linked 2880161
> 18@1 188
R 1 CIRRL
y < . 3 \ ﬁv\o‘ﬁ ENE
X & 59 o¥ E
\ : _,\)::‘ \3«\:“’ 593-1;_;"0‘. T
o> P g,i:: 2" I 516
3 P @Y o % ap*® . . =
8 e T e complier/libraries ot
I~ LAl

150
— R
)
=

and OS

OSG User School 2016

T

= -~

S

Open Science Grid Stati c I i n ki n g

Source code

B
BN
=t L

L

B —t
. . &
(O o e

) b §
1,
=
| B — -
——

B i iled + ic linki SSRRIS
compiled + static linking oo dpd
’4“)‘ ed ¥ > B l‘j 1 1 [':1 }‘:1
Rey BE1118
, g o b s“‘o"& .
e O™ 2 of
\) n‘::’“a“\e; 5935‘) o™ B

compiler
" and OS

run anywhere
OSG User School 2016

26

~— Compilation (command line)

Open Science Grid

ckoch — ckoch5@submit-5:~/0osg/code/compile — ssh — 69x21

$ 1s

hello.c

$ gcc hello.c -o hello_dynamic

$ 1s

hello.c hell '

$ file hello_dynamic

hello_dynamic: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), d
ynamically linked (uses shared libs), for GNU/Linux 2.6.18, not strip
ped

$ gcc -static hello.c -o hello_static

$ 1s

hello.c hello_dynamic hell

$ file hello_static

hello_static: ELF 64-bit LSB executable, x86-64, version 1 (GNU/Linux
), statically linked, for GNU/Linux 2.6.18, not stripped

$

~— Static compilation workflow

Open Science Grid

Execute server

Option 1 Submit server

compile

or&
ot
ot

Option 2
download

=0
=
BT

) =

L
=0 — |
==
1 =
[}

— T
=
B

1]
‘Al

R
2l
)
50 %
o
=0t
-— S,

LI W)
SR
1150

—y .

= §

=
H -
[N}
ol
— =

=

Ra——

pen Science Grid

Method 2

USE WRAPPER SCRIPTS

~— Set up software with every job

e Good for software that:
— Can’t be statically compiled
— Uses interpreted languages (Matlab, Python,
R)
— Any software with instructions for local
installation

 Method: write a wrapper script
— Contains a list of commands to execute

- Typically written in bash or perl (usually
common across operating systems/versions)

-~

== Wrapper scripts

Open Science Grid

e Set up software in the working directory
— Unpack pre-built OR
— Install on the fly OR
— Just use normal compiled code

e Run software

e Besides software: manage data/files in
the working directory

— Move or rename output
— Delete installation files before job completion

Wrapper script workflow

Execute server

Open Science Grid

1110010000068
0010861
]

110

1
3011001910111
1

Submit server

/ wrapper scri p\

1
18119 31180111001
21110010881110111811
bo1 11108 18

source/compiled

111861108111001000606

%0110010101110810881
000101110000
1 000010111
Jet1e 31108111081(
91110111811

90111000001 100
111
16

L] L]
—
. ; P
P e D01106601011100000110
X : 111601100111001000060
v pO110010101110010861

= When to pre-build?

Pre-built installation Install with every job

e |nstall once, use in o Computers must have
multiple jobs appropriate tools

e Faster than installing (compilers, libraries)
from source code for software to install
within the job e Can run on multiple

« Jobs must run on a systems, if these
computer similar to requirements are met
where the program e Longer set-up time

was built

-~
- -

~ Preparing your code

 \Where do you compile code? Pre-build
code? Test your wrapper script?

e Guiding question: how computationally
intensive is the task?

- Computationally intensive (takes more than a few
minutes, as a rule of thumb)

* Run as interactive job, on a private computer/server,
or with a queued job

— Computationally light (runs in few minutes or
less)

* Run on submit server (or above options, if desired)

-~

= Exercises

Open Science Grid

o Software is a compiled binary

— Exercise 1.1: statically compile code and run
(C code)

— Exercise 1.2: download and run pre-compiled
binary (BLAST)

-~

= Exercises

Open Science Grid

* Introduction to using wrapper scripts

— Exercise 1.3: use a wrapper script to run
previously downloaded software (BLAST)

 Portable installation and wrapper scripts

— Exercise 1.4: create a pre-built software
Installation, and write a wrapper script to
unpack and run software (OpenBUGS)

-~

= Questions?

Open Science Grid

e Feel free to contact me:
- ckochb5@wisc.edu

e Now: Hands-on Exercises
- 9:30-10:30am

e Next:
- 10:30-10:45am: Break

- 10:45am-12:15pm: Other research software
considerations: licenses, interpreted
languages, and containers

-12:15-1:15pm: Lunch

