
Beyond Basic DAGMan Workflows

Monday PM, Lecture 2
Lauren Michael

OSG Summer School 2017

Questions so far?

2

OSG Summer School 2017

Goals for this Session
• Node-level options in a DAG
• Modular organization of DAG components
• DAG-level control
• Additional DAGMan Features

3

OSG Summer School 2017

BEYOND THE BASIC DAG:
NODE-LEVEL MODIFIERS

4

OSG Summer School 2017

Default File Organization

HTCondor Manual: DAGMan Applications > DAG Input File

• What if you want to organize files
into other directories?

(dag_dir)/
A.sub B1.sub
B2.sub B3.sub
C.sub my.dag
(other job files)

JOB A A.sub
JOB B1 B1.sub
JOB B2 B2.sub
JOB B3 B3.sub
JOB C C.sub
PARENT A CHILD B1 B2 B3
PARENT B1 B2 B3 CHILD C

my.dag

OSG Summer School 2017

Node-specific File Organization
with DIR

HTCondor Manual: DAGMan Applications > DAG Input File

• DIR sets the submission directory of the node

(dag_dir)/
my.dag
A/ A.sub (A job files)
B/ B1.sub B2.sub

B3.sub (B job files)
C/ C.sub (C job files)

JOB A A.sub DIR A
JOB B1 B1.sub DIR B
JOB B2 B2.sub DIR B
JOB B3 B3.sub DIR B
JOB C C.sub DIR C
PARENT A CHILD B1 B2 B3
PARENT B1 B2 B3 CHILD C

my.dag

OSG Summer School 2017

PRE and POST scripts run on the
submit server, as part of the node

HTCondor Manual: DAGMan Applications > DAG Input File

• Use sparingly for lightweight work;
otherwise include work in node jobs

JOB A A.sub
SCRIPT POST A sort.sh
JOB B1 B1.sub
JOB B2 B2.sub
JOB B3 B3.sub
JOB C C.sub
SCRIPT PRE C tar_it.sh
PARENT A CHILD B1 B2 B3
PARENT B1 B2 B3 CHILD C

my.dag

OSG Summer School 2017

RETRY failed nodes to overcome
transient errors

DAGMan Applications > Advanced Features > Retrying
DAGMan Applications > DAG Input File > SCRIPT

• Retry a node up to N times if the exit code is non-zero:
RETRY node_name N

• Note: Unnecessary for nodes (jobs) that can use max_retries
in the submit file

• See also: retry except for a particular exit code (UNLESS-
EXIT), or retry scripts (DEFER)

JOB A A.sub
RETRY A 5
JOB B B.sub
PARENT A CHILD B

Example:

OSG Summer School 2017

RETRY applies to whole node,
including PRE/POST scripts

DAGMan Applications > Advanced Features > Retrying
DAGMan Applications > DAG Input File > SCRIPT

• PRE and POST scripts are included in retries
• RETRY of a node with a POST script uses the exit code from

the POST script (not from the job)
- POST script can do more to determine node success, perhaps by

examining JOB output

SCRIPT PRE A download.sh
JOB A A.sub
SCRIPT POST A checkA.sh
RETRY A 5

Example:

OSG Summer School 2017

SCRIPT Arguments and
Argument Variables

DAGMan Applications > DAG Input File > SCRIPT
DAGMan Applications > Advanced Features > Retrying

$JOB: node name
$JOBID: cluster.proc
$RETURN: exit code of the node
$PRE_SCRIPT_RETURN: exit code of PRE script
$RETRY: current retry count
(more variables described in the manual)

JOB A A.sub
SCRIPT POST A checkA.sh my.out $RETURN
RETRY A 5

OSG Summer School 2017

Best Control Achieved with One
Process per JOB Node

HTCondor Manual: DAGMan Applications > DAG Input File

• While submit files can
‘queue’ many processes, a
single process per submit
file is best for DAG JOBs
- Failure of any process in a

JOB node results in failure of
the entire node and
immediate removal of other
processes in the node.

- RETRY of a JOB node
retries the entire submit file.

...B1 B2 B3 BN

A

C

OSG Summer School 2017

MODULAR ORGANIZATION OF
DAG COMPONENTS

12

OSG Summer School 2017

Submit File Templates via VARS

DAGMan Applications > Advanced Features > Variable Values

• VARS line defines node-specific values that are passed into
submit file variables

VARS node_name var1=“value” [var2=“value”]

• Allows a single submit file shared by all B jobs, rather than one
submit file for each JOB.

B.sub
…
InitialDir = $(data)
arguments = $(data).csv $(opt)
…
queue

JOB B1 B.sub
VARS B1 data=”B1” opt=“10”
JOB B2 B.sub
VARS B2 data=“B2” opt=“12”
JOB B3 B.sub
VARS B3 data=“B3” opt=“14”

my.dag

OSG Summer School 2017

SPLICE groups of nodes to
simplify lengthy DAG files

DAGMan Applications > Advanced Features > DAG Splicing

JOB A A.sub
SPLICE B B.spl
JOB C C.sub
PARENT A CHILD B
PARENT B CHILD C

my.dag

JOB B1 B1.sub
JOB B2 B2.sub
…
JOB BN BN.sub

B.spl
...B1 B2 B3 BN

A

C

OSG Summer School 2017

Use nested SPLICEs with DIR for
repeating workflow components

my.dag

B.spl

JOB A A.sub DIR A
SPLICE B B.spl DIR B
JOB C C.sub DIR C
PARENT A CHILD B
PARENT B CHILD C

SPLICE B1 ../inner.spl DIR B1
SPLICE B2 ../inner.spl DIR B2
…
SPLICE BN ../inner.spl DIR BN

DAGMan Applications > Advanced Features > DAG Splicing

inner.spl
JOB 1 ../1.sub
JOB 2 ../2.sub
PARENT 1 CHILD 2

...

A

C

222

B.spl B1
1

B2 BN
11

OSG Summer School 2017

Use nested SPLICEs with DIR for
repeating workflow components

my.dag

B.spl

JOB A A.sub DIR A
SPLICE B B.spl DIR B
JOB C C.sub DIR C
PARENT A CHILD B
PARENT B CHILD C

SPLICE B1 ../inner.spl DIR B1
SPLICE B2 ../inner.spl DIR B2
…
SPLICE BN ../inner.spl DIR BN

DAGMan Applications > Advanced Features > DAG Splicing

inner.spl
JOB 1 ../1.sub
JOB 2 ../2.sub
PARENT 1 CHILD 2

my.dag
A/ A.sub (A job files)
B/ B.spl inner.spl

1.sub 2.sub
B1/ (1-2 job files)
B2/ (1-2 job files)
…
BN/ (1-2 job files)

C/ C.sub (C job files)

(dag_dir)/

OSG Summer School 2017

More on SPLICE Behavior
• Upon submission of the outer DAG, nodes in the

SPLICE(s) are added by DAGMan into the overall
DAG structure.
- A single DAGMan job is queued with single set of status files.

• Great for gradually testing and building up a large
DAG (since a SPLICE file can be submitted by itself,
as a complete DAG).

• SPLICE lines are not treated like nodes.
- no PRE/POST scripts or RETRIES (though this may change)

DAGMan Applications > Advanced Features > DAG Splicing

OSG Summer School 2017

What if some DAG components
can’t be known at submit time?

If N can only
be determined
as part of the
work of A …

...B1 B2 B3 BN

A

C

OSG Summer School 2017

A SUBDAG within a DAG

DAGMan Applications > Advanced Features > DAG Within a DAG

my.dag

B.dag (written by A)
...B1 B2 B3 BN

A

C

JOB A A.sub
SUBDAG EXTERNAL B B.dag
JOB C C.sub
PARENT A CHILD B
PARENT B CHILD C

JOB B1 B1.sub
JOB B2 B2.sub
…
JOB BN BN.sub

OSG Summer School 2017

More on SUBDAG Behavior
• WARNING: SUBDAGs should only be used

(over SPLICES) when absolutely necessary!
- Each SUBDAG EXTERNAL has it’s own DAGMan

job running in the queue, on the submit server.
• SUBDAGs are nodes in the outer DAG (can

have PRE/POST scripts, retries, etc.)
• A SUBDAG is not submitted until prior nodes in

the outer DAG have completed.

DAGMan Applications > Advanced Features > DAG Within a DAG

OSG Summer School 2017

Use a SUBDAG to achieve a
Cyclic Component within a DAG

DAGMan Applications > Advanced Features > DAG Within a DAG

JOB A A.sub
SUBDAG EXTERNAL B B.dag
SCRIPT POST B iterateB.sh
RETRY B 1000
JOB C C.sub
PARENT A CHILD B
PARENT B CHILD C

my.dag

• POST script determines whether another
iteration is necessary; if so, exits non-zero

• RETRY applies to entire SUBDAG, which may
include multiple, sequential nodes

B

A

C

POST	script
RETRY

OSG Summer School 2017

DAG-LEVEL CONTROL

22

OSG Summer School 2017

Pause a running DAG with
hold/release

• Hold the DAGMan job process:
condor_hold dagman_jobID

• Pauses the DAG
- No new node jobs submitted
- Queued node jobs continue to run (including

SUBDAGs), but no PRE/POST scripts
- DAGMan jobs remains in the queue until

released (condor_release) or removed

DAGMan > Suspending a Running DAG

OSG Summer School 2017

Pause a DAG with a halt file
• Create a file named DAG_file.halt in the same

directory as the submitted DAG file
• Pauses the DAG

- No new node jobs submitted
- Queued node jobs, SUBDAGs, and POST scripts

continue to run, but not PRE scripts

• DAGMan resumes after the file is deleted
- If not deleted, the DAG creates a rescue DAG file and

exits after all queued jobs have completed
DAGMan > Suspending a Running DAG
DAGMan > The Rescue DAG

OSG Summer School 2017

Throttle job nodes of large DAGs via
DAG-level configuration

• If a DAG has many (thousands or more) jobs,
performance of the submit server and queue can be
assured by limiting:
- Number of jobs in the queue
- Number of jobs idle (waiting to run)
- Number of PRE or POST scripts running

• Limits can be specified in a DAG-specific
CONFIG file (recommended) or as arguments
to condor_submit_dag

DAGMan > Advanced Features > Configuration Specific to a DAG

OSG Summer School 2017

DAG-specific throttling via a
CONFIG file

JOB A A.sub
SPLICE B B.dag
JOB C C.sub
PARENT A CHILD B
PARENT B CHILD C
CONFIG my.dag.config

my.dag

DAGMAN_MAX_JOBS_SUBMITTED = 1000
DAGMAN_MAX_JOBS_IDLE = 100
DAGMAN_MAX_PRE_SCRIPTS = 4
DAGMAN_MAX_POST_SCRIPTS = 4

my.dag.config

DAGMan > Advanced Features > Configuration Specific to
a DAG

...B1 B2 B3 BN

A

C

Other DAGMan Features

OSG Summer School 2017

Other DAGMan Features:
Node-Level Controls

DAGMan Applications > Advanced Features > Setting Priorities
DAGMan Applications > The DAG Input File > PRE_SKIP

• Set the PRIORITY of JOB nodes with:
PRIORITY node_name priority_value

• Use a PRE_SKIP to skip a node and mark it as
successful, if the PRE script exits with a specific exit
code:

PRE_SKIP node_name exit_code

OSG Summer School 2017

Other DAGMan Features:
Modular Control

DAGMan Applications > The DAG Input File > JOB
DAGMan Applications > Advanced Features > INCLUDE
DAGMan Applications > Advanced > Throttling by Category

• Append NOOP to a JOB definition so that its JOB process
isn’t run by DAGMan
- Test DAG structure without running jobs (node-level)
- Simplify combinatorial PARENT-CHILD statements (modular)

• Communicate DAG features separately with INCLUDE
- e.g. separate file for JOB nodes and for VARS definitions, as part of the same

DAG

• Define a CATEGORY to throttle only a specific subset of jobs

OSG Summer School 2017

Other DAGMan Features:
DAG-Level Controls

• Replace the node_name with ALL_NODES to apply a DAG
feature to all nodes of the DAG

• Abort the entire DAG if a specific node exits with a specific
exit code:

ABORT-DAG-ON node_name exit_code

• Define a FINAL node that will always run, even in the event
of DAG failure (to clean up, perhaps).

FINAL node_name submit_file

DAGMan Applications > Advanced > ALL_NODES
DAGMan Applications > Advanced > Stopping the Entire DAG
DAGMan Applications > Advanced > FINAL Node

Much More in the HTCondor
Manual!!!

https://research.cs.wisc.edu/htcondor/manual/current/2_Users_Manual.html

OSG Summer School 2017

YOUR TURN!

32

OSG Summer School 2017

Exercises!
• Ask questions!
• Lots of instructors around

• Coming up:
- 4:00–5:00pm Hands-On Exercises
- 5:00pm On Your Own

33

