
Workflows with HTCondor’s

DAGMan

OSG School 2025
Andrew Owen

OSG User School 2025

Scenario

You have two jobs to run: job A and job B.

You have two corresponding template submit files: A.sub and B.sub

You want job B to run only after job A has completed successfully

A

(A.sub)

B

(B.sub)

A is the parent

B is the child

continue only if

successful

2

OSG User School 2025

How?

HTCondor offers you the services of the

Directed Acyclic Graph Manager → DAGMan

to automate the submission of jobs (with dependencies)

3

OSG User School 2025

How?

The Directed Acyclic Graph Manager (DAGMan) manages the

placement of lists of jobs represented by "nodes" that are

connected by "edges"

A

(A.sub)

B

(B.sub)

A is the parent

B is the child

continue only if

successful
node node

edge

4

OSG User School 2025

Create the DAG input file

In a file, you need to

(1) declare the job submissions and (2) declare the dependencies.

my-first.dag

5

OSG User School 2025

Create the DAG input file

In a file, you need to

(1) declare the job submissions and (2) declare the dependencies.

JOB A A.sub

JOB B B.sub

my-first.dag

Syntax

JOB <node_name> <submit_file_name>

6

OSG User School 2025

Create the DAG input file

In a file, you need to

(1) declare the job submissions and (2) declare the dependencies.

JOB A A.sub

JOB B B.sub

my-first.dag

Syntax

JOB <node_name> <submit_file_name>

If any job fails in this submit file,

the whole job (node) fails!

7

OSG User School 2025

Create the DAG input file

In a file, you need to

(1) declare the job submissions and (2) declare the dependencies.

JOB A A.sub

JOB B B.sub

PARENT A CHILD B

my-first.dag

Syntax

PARENT <node_name> CHILD <node_name>

depends on

8

A is the parent

B is the child

OSG User School 2025

Create the DAG input file

In a file, you need to

(1) declare the job submissions and (2) declare the dependencies.

JOB A A.sub

JOB B B.sub

PARENT A CHILD B

my-first.dag

9

OSG User School 2025

Create the DAG input file

How can we tell if job A completed successfully?

● Default behavior: if the job exits with code 0 → successful

JOB A A.sub

JOB B B.sub

PARENT A CHILD B

my-first.dag

10

OSG User School 2025

Create the DAG input file

How can we tell if job A completed successfully?

● For more complex checks, you can use a script

JOB A A.sub

JOB B B.sub

PARENT A CHILD B

my-first.dag

11

OSG User School 2025

Create the DAG input file

How can we tell if job A completed successfully?

● For more complex checks, you can use a script

JOB A A.sub

SCRIPT POST A A-check.sh

JOB B B.sub

PARENT A CHILD B

my-first.dag

Syntax

SCRIPT POST <node_name> <script_name>

*order of lines does not actually matter

12

OSG User School 2025

Submitting and Monitoring the DAG

13

OSG User School 2025

Submit the DAG

By default, DAGMan expects the submit files A.sub and B.sub are in the

same directory as my-first.dag, along with A-check.sh, on an

HTCondor Access Point

DAG_simple/

|-- my-first.dag

|-- A.sub

|-- A-check.sh

|-- B.sub

Basic Working Directory

14

OSG User School 2025

Submit the DAG

By default, DAGMan expects the submit files A.sub and B.sub are in the

same directory as my-first.dag, along with A-check.sh, on an

HTCondor Access Point

DAG_simple/

|-- my-first.dag

|-- A.sub

|-- A-check.sh

|-- B.sub

Basic Working Directory

It is possible to

create other

directory structures,

but for now we will

use this simple, flat

organization.

15

OSG User School 2025

Submit the DAG

Command to submit, or place, the DAGMan job:

condor_submit_dag <dag_description_file>

condor_submit_dag my-first.dag

[user@ap40 DAG_simple]$ condor_q

-- Schedd: ap40.uw.osg-htc.org : <128.105.68.92:9618?... @ 09/01/24 11:26:51
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS
user my-first.dag+562265 09/01 11:26 _ _ 1 2 562279.0

16

This then starts the DAG node scheduler job, which we can see in the

queue:

OSG User School 2025

Monitor the DAG

This then starts the DAG node scheduler job, which we can see in the

queue:

[user@ap40 DAG_simple]$ condor_q

-- Schedd: ap40.uw.osg-htc.org : <128.105.68.92:9618?... @ 09/01/24 11:26:51
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS
user my-first.dag+562265 09/01 11:26 _ _ 1 2 562279.0

BATCH_NAME for the DAGMan job is the name of the input description

file, my-first.dag, plus the Job ID of the scheduler job (562265)

17

OSG User School 2025

Monitor the DAG

This then starts the DAG node scheduler job, which we can see in the

queue:

[user@ap40 DAG_simple]$ condor_q

-- Schedd: ap40.uw.osg-htc.org : <128.105.68.92:9618?... @ 09/01/24 11:26:51
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS
user my-first.dag+562265 09/01 11:26 _ _ 1 2 562279.0

The total number of jobs for my-first.dag+562265 corresponds to the total

number of nodes in the DAG (2)

18

OSG User School 2025

Monitor the DAG

This then starts the DAG node scheduler job, which we can see in the

queue:

[user@ap40 DAG_simple]$ condor_q

-- Schedd: ap40.uw.osg-htc.org : <128.105.68.92:9618?... @ 09/01/24 11:26:51
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS
user my-first.dag+562265 09/01 11:26 _ _ 1 2 562279.0

Only 1 node is listed as "Idle", so DAGMan has only submitted 1 job so far.

This is consistent with the fact that node A has to complete before

DAGMan can submit the job for node B.
19

OSG User School 2025

Monitor the DAG

For more detailed monitoring:

[user@ap40 DAG_simple]$ condor_q -dag -nob

-- Schedd: ap40.uw.osg-htc.org : <128.105.68.92:9618?... @ 12/14/23 11:27:03
ID OWNER/NODENAME SUBMITTED RUN_TIME ST PRI SIZE CMD
562265.0 user 09/01 11:26 0+00:00:37 R 0 0.5 condor_dagman
562279.0 |-A 09/01 11:26 0+00:00:00 I 0 0.0 A.sh

First entry: dag node scheduler job created upon submission

20

OSG User School 2025

Monitor the DAG

For more detailed monitoring:

[user@ap40 DAG_simple]$ condor_q -dag -nob

-- Schedd: ap40.uw.osg-htc.org : <128.105.68.92:9618?... @ 12/14/23 11:27:03
ID OWNER/NODENAME SUBMITTED RUN_TIME ST PRI SIZE CMD
562265.0 user 09/01 11:26 0+00:00:37 R 0 0.5 condor_dagman
562279.0 |-A 09/01 11:26 0+00:00:00 I 0 0.0 A.sh

Additional entries: correspond to nodes whose jobs are currently in the queue.

● Reminder: Nodes that have not yet been submitted by DAGMan or that have

completed and thus left the queue will not show up in condor_q output.

21

OSG User School 2025

Additional Tools to Monitor your Workflow

DAGMan will produce helpful files to learn about and troubleshoot your

workflow.

[user@ap40 DAG_simple]$ condor_submit_dag my-first.dag

File for submitting this DAG to HTCondor : my-first.dag.condor.sub
Log of DAGMan debugging messages : my-first.dag.dagman.out
Log of HTCondor library output : my-first.dag.lib.out
Log of HTCondor library error messages : my-first.dag.lib.err
Log of the life of condor_dagman itself : my-first.dag.dagman.log

Submitting job(s).
1 job(s) submitted to cluster 562265.

22

OSG User School 2025

Overview of process

JOB A A.sub

JOB B B.sub

PARENT A CHILD B

my-first.dag

condor_submit_dag
1. DAG node scheduler job starts

2. A.sub executes → completes

3. A returned exit code 0 → continue

4. B.sub executes → completes

5. DAG node scheduler job completes

23

OSG User School 2025

Overview of process

JOB A A.sub

SCRIPT POST A A-check.sh

JOB B B.sub

PARENT A CHILD B

my-first.dag

condor_submit_dag
1. DAG node scheduler job starts

2. A.sub executes → completes

3. A-check.sh succeeds → continue

4. B.sub executes → completes

5. DAG node scheduler job completes

24

OSG User School 2025

• All DAGMan PRE/POST scripts run on the Access Point and not on an

Execution Point Slot.
• Scripts provide a way to perform tasks at key points in a node’s lifetime.

○ E.g., checking if files exist, creating directories, consolidating files

• Should be lightweight (low computational) programs/tasks

PRE Script

JOB

POST Script

Node

DAGMan Node Scripts Documentation

PRE/POST scripts

25

https://htcondor.readthedocs.io/en/latest/automated-workflows/dagman-scripts.html
https://htcondor.readthedocs.io/en/latest/automated-workflows/dagman-scripts.html

OSG User School 2025

What is Considered a Failure

• A non-zero exit code in the PRE script, JOB, or POST script is

considered a failure

• DAGMan will continue running work until can no longer progress

26

PRE Script

JOB

POST Script

Node

OSG User School 2025

Overall

DAGMan will do as much work as it can until
completion ("success") or failure

27

OSG User School 2025

● Once a node has failed and no more progress in the DAG can be made,

DAGMan will produce a rescue file and exit.

○ Rescue file is named <dag_description_file>.rescue001
■ "001" increments for each new rescue file

○ Records which NODEs have completed successfully

■ does not contain the actual DAG structure

Rescue DAGs Documentation

A Failed DAG

A.sub B.sub check-A.sh
my-first.dag my.-first.dag.condor.sub my.dag.dagman.log
my-first.dag.dagman.out my-first.dag.lib.err my-first.dag.lib.out
my-first.dag.metrics my-first.dag.nodes.log my-first.dag.rescue001
(other job files)

DAG_simple/

28

https://htcondor.readthedocs.io/en/latest/automated-workflows/dagman-resubmit-failed.html#the-rescue-dag

OSG User School 2025

● Search for issue in <dag filename>.dagman.out and job standard

error/output files

● Once issue is fixed, resubmit with condor_submit_dag
○ Rescue file will be automatically detected and progress will resume from

the point it left off

Dealing with a Failed DAG

29

OSG User School 2025

Many DAGs

30

OSG User School 2025

Many DAGs

Scenario: Now you have to run the A→B workflow many times in parallel

How to accomplish?

A1 B1

A2 B2

AN BN

⋮

31

OSG User School 2025

Many DAGs … or One Big DAG

Write a script that generates your DAG description file* for you

(and the needed files)

*for now. We are working to develop better of ways of handling this scenario.

JOB A A.sub

JOB B B.sub

PARENT A CHILD B

my-first.dag

32

OSG User School 2025

Many DAGs … or One Big DAG

Write a script that generates your DAG description file* for you

(and the needed files)

JOB A A.sub

JOB B B.sub

PARENT A CHILD B

my-first.dag

JOB A1 A1.sub

JOB B1 B1.sub

PARENT A1 CHILD B1

JOB A2 A2.sub

JOB B2 B2.sub

PARENT A2 CHILD B2

⋮

my-big.dag

python

bash

…

*for now. We are working to develop better of ways of handling this scenario.
33

OSG User School 2025

One Big DAG

Once ready, do a single condor_submit_dag

command

The DAG node scheduler job will manage all

of the submissions while keeping track of the

dependencies

JOB A1 A1.sub

JOB B1 B1.sub

PARENT A1 CHILD B1

JOB A2 A2.sub

JOB B2 B2.sub

PARENT A2 CHILD B2

⋮

my-big.dag

34

OSG User School 2025

One Big DAG – Reuse Files

In the big DAG, there were a lot of similar

files: A{x}.sub, B{x}.sub

Instead of A1.sub, A2.sub, … AN.sub, can use
A.sub

JOB A1 A.sub

JOB B1 B1.sub

PARENT A1 CHILD B1

JOB A2 A.sub

JOB B2 B2.sub

PARENT A2 CHILD B2

⋮

my-big.dag

35

OSG User School 2025

One Big DAG – Reuse Files

In the big DAG, there were a lot of similar

files: A{x}.sub, B{x}.sub

Instead of A1.sub, A2.sub, … AN.sub, can use
A.sub

Then pass the number to the submit file with

the VARS command

JOB A1 A.sub

VARS A1 number=1

JOB B1 B1.sub

PARENT A1 CHILD B1

JOB A2 A.sub

VARS A2 number=2

JOB B2 B2.sub

PARENT A2 CHILD B2

⋮

my-big.dag

36

DAG Description File Syntax

VARS <node_name> <variable>=<value>

Submit File Syntax

arguments = $(<variable>)

OSG User School 2025

One Big DAG – Reuse Files

In the big DAG, there were a lot of similar

files: A{x}.sub, B{x}.sub

Instead of A1.sub, A2.sub, … AN.sub, can use
A.sub

Then pass the number to the submit file with

the VARS command

Can repeat for B.sub

JOB A1 A.sub

VARS A1 number=1

JOB B1 B.sub

VARS B1 number=1

PARENT A1 CHILD B1

JOB A2 A.sub

VARS A2 number=2

JOB B2 B.sub

VARS B1 number=2

PARENT A2 CHILD B2

⋮

my-big.dag37

OSG User School 2025

One Big DAG - What If It Fails?

Let's say that A1 job finishes and A-check.sh finds

that the output of A1 is incorrect, and that A1 has

failed. What happens?
A1 B1

A2 B2

AN BN

⋮

X

? ?

?

? ?

X = Failed

? = Not known yet

38

OSG User School 2025

One Big DAG - What If It Fails?

Let's say that A1 job finishes and A-check.sh finds

that the output of A1 is incorrect, and that A1 has

failed. What happens?

● DAGMan does as much work as it can, then

creates a Rescue DAG.

● While B1 won't be started, the DAG node

scheduler will keep submitting and managing

the other AN & BN jobs until there is no more

work.

A1 B1

A2 B2

AN BN

⋮

X

S ?

Ø

S ?

S = Submitted

X = Failed

Ø = Will not be submitted

? = Not known yet

39

OSG User School 2025

One Big DAG - What If It Fails

Let's say that A1 job finishes and A-check.sh finds

that the output of A1 is incorrect, and that A1 has

failed. What happens?

● The Rescue DAG is used automatically the

next time you run condor_submit_dag, and

the DAG node scheduler job will only

submit the unsuccessful nodes.

○ If all but A1→B1 completed successfully, then

when the Rescue DAG is submitted, only the

A1→B1 will be attempted.

A1 B1

A2 B2

AN BN

⋮

S ?

S = Submitted

? = Not known yet

= Successful completion

40

OSG User School 2025

Endless Workflow Possibilities

Wikimedia Commons

https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator 41

Shared ancestor workflows

OSG User School 2025

Endless Workflow Possibilities

42

A "Bag" of Jobs Disjoined Workflows

Different ancestor workflows

OSG User School 2025

Learn More

● Beginner DAGMan Resources:
○ https://www.youtube.com/watch?v=OuIBf6x24r0&pp=ygUGZGFnbWFu
○ https://portal.osg-

htc.org/documentation/htc_workloads/automated_workflows/dagman-workflows/
○ https://portal.osg-

htc.org/documentation/htc_workloads/automated_workflows/dagman-simple-
example/

● Intermediate DAGMan Resources:
○ https://portal.osg-

htc.org/documentation/support_and_training/training/osgusertraining/
○ https://github.com/OSGConnect/tutorial-dagman-intermediate

● DAGMan Core Documentation
○ https://htcondor.readthedocs.io/en/latest/automated-workflows/index.html

43

https://www.youtube.com/watch?v=OuIBf6x24r0&pp=ygUGZGFnbWFu
https://portal.osg-htc.org/documentation/htc_workloads/automated_workflows/dagman-workflows/
https://portal.osg-htc.org/documentation/htc_workloads/automated_workflows/dagman-workflows/
https://portal.osg-htc.org/documentation/htc_workloads/automated_workflows/dagman-simple-example/
https://portal.osg-htc.org/documentation/htc_workloads/automated_workflows/dagman-simple-example/
https://portal.osg-htc.org/documentation/htc_workloads/automated_workflows/dagman-simple-example/
https://portal.osg-htc.org/documentation/support_and_training/training/osgusertraining/
https://portal.osg-htc.org/documentation/support_and_training/training/osgusertraining/
https://github.com/OSGConnect/tutorial-dagman-intermediate
https://htcondor.readthedocs.io/en/latest/automated-workflows/index.html

Questions?

44

OSG User School 2025

Submit File Templates via VARS
• VARS line defines node-specific values that are passed into

submit file variables
VARS node_name var1="value" [var2="value"]

• Allows a single submit file shared by all B jobs, rather than one
submit file for each JOB.

B.sub

…

InitialDir = $(data)

arguments = $(data).csv $(opt)

…

queue

JOB B1 B.sub

VARS B1 data="B1" opt="10"

JOB B2 B.sub

VARS B2 data="B2" opt="12"

JOB B3 B.sub

VARS B3 data="B3" opt="14"

my.dag

45

OSG User School 2025

A DAG within a DAG = "SUBDAG"

my.dag

JOB A A.sub

SCRIPT POST A generate_B.sh

SUBDAG EXTERNAL B B.dag

JOB C C.sub

PARENT A CHILD B

PARENT B CHILD C

46

B

OSG User School 2025

A DAG within a DAG = "SUBDAG"

my.dag

B.dag

JOB A A.sub

SCRIPT POST A generate_B.sh

SUBDAG EXTERNAL B B.dag

JOB C C.sub

PARENT A CHILD B

PARENT B CHILD C

JOB B1 B1.sub

JOB B2 B2.sub

…

JOB BN BN.sub

47

OSG User School 2025

A DAG within a DAG = "SUBDAG"

my.dag

JOB A A.sub

SCRIPT POST A generate_B.sh

SUBDAG EXTERNAL B B.dag

JOB C C.sub

PARENT A CHILD B

PARENT B CHILD C

48

JOB → condor_submit
SUBDAG EXTERNAL → condor_submit_dag

OSG User School 2025

A DAG within a DAG = "SUBDAG"

A can write the

input files for

subdag B!

49

	Slide 1: Workflows with HTCondor’s DAGMan
	Slide 2: Scenario
	Slide 3: How?
	Slide 4: How?
	Slide 5: Create the DAG input file
	Slide 6: Create the DAG input file
	Slide 7: Create the DAG input file
	Slide 8: Create the DAG input file
	Slide 9: Create the DAG input file
	Slide 10: Create the DAG input file
	Slide 11: Create the DAG input file
	Slide 12: Create the DAG input file
	Slide 13: Submitting and Monitoring the DAG
	Slide 14: Submit the DAG
	Slide 15: Submit the DAG
	Slide 16: Submit the DAG
	Slide 17: Monitor the DAG
	Slide 18: Monitor the DAG
	Slide 19: Monitor the DAG
	Slide 20: Monitor the DAG
	Slide 21: Monitor the DAG
	Slide 22: Additional Tools to Monitor your Workflow
	Slide 23: Overview of process
	Slide 24: Overview of process
	Slide 25: PRE/POST scripts
	Slide 26: What is Considered a Failure
	Slide 27
	Slide 28: A Failed DAG
	Slide 29: Dealing with a Failed DAG
	Slide 30: Many DAGs
	Slide 31: Many DAGs
	Slide 32: Many DAGs … or One Big DAG
	Slide 33: Many DAGs … or One Big DAG
	Slide 34: One Big DAG
	Slide 35: One Big DAG – Reuse Files
	Slide 36: One Big DAG – Reuse Files
	Slide 37: One Big DAG – Reuse Files
	Slide 38: One Big DAG - What If It Fails?
	Slide 39: One Big DAG - What If It Fails?
	Slide 40: One Big DAG - What If It Fails
	Slide 41: Endless Workflow Possibilities
	Slide 42: Endless Workflow Possibilities
	Slide 43: Learn More
	Slide 44: Questions?
	Slide 45: Submit File Templates via VARS
	Slide 46: A DAG within a DAG = "SUBDAG"
	Slide 47: A DAG within a DAG = "SUBDAG"
	Slide 48: A DAG within a DAG = "SUBDAG"
	Slide 49: A DAG within a DAG = "SUBDAG"

