
Backpacking with Code:
Software Portability for HTC

Andrew Owen

Slides adapted from Christina Koch, Rachel Lombardi

OSG User School 2025

Goals For This Session

• Describe what it means to make software “portable.”

• Compare and contrast software portability techniques.

• Choose the best portability technique for your software.

• Build a portable software environment.
• Follow steps to build a container

• Compile code on a Linux computer

2OSG School 2025 - Software Portability

Introduction

3OSG School 2025 - Software Portability

Imagine that we asked you to
go home and bake a cake...

4OSG School 2025 - Software Portability

An Analogy

Running software on your own
computer is like cooking in your
own kitchen.

Photo by jschantz on flickr, CC-BY

5OSG School 2025 - Software Portability

https://www.flickr.com/photos/jshontz/
https://www.flickr.com/photos/jshontz/18991915294

On Your Computer

• You know what is there.
• All the software you need is already installed.

• You know where everything is (mostly).

• You have full control.
• You can add new programs when and where you want.

6OSG School 2025 - Software Portability

OSPool: Other People’s Computers

7OSG School 2025 - Software Portability

The Challenge

Running code on someone
else’s computer is like cooking
in someone else’s kitchen.

Photo by F Deventhal on Wikimedia, CC-BY

8OSG School 2025 - Software Portability

https://www.flickr.com/people/krossbow/
https://commons.wikimedia.org/wiki/File:Julia_Child%27s_Kitchen_-_Smithsonian.jpg

On Someone Else’s Computer

• What’s already there?
• Is R installed? Or Python? What about the packages you need?

• If the software you need is installed, do you know where it is or
how to access it?

• Are you allowed to change whatever you want?

9OSG School 2025 - Software Portability

The Solution

• Imagine going camping or
backpacking – what do you need
to do to cook anywhere?

• Similarly: take your software with
you to any computer.

• This is what it means to make
software portable.

Photo by andrew welch on Unsplash

10OSG School 2025 - Software Portability

https://unsplash.com/@andrewwelch3?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/photos/eqvj5r8nbH8?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Option 1: Containers

11OSG School 2025 - Software Portability

Returning to Our Analogy…

Using a container is like bringing along a whole kitchen.

Photo by PunkToad on Flickr, CC-BY 12OSG School 2025 - Software Portability

https://www.flickr.com/photos/punktoad/
https://www.flickr.com/photos/83699771@N00/9123847716

Containers

Containers are a tool for capturing an entire “environment”
(software, libraries, operating system) into an “image” that can be
run and used as the environment for a job

C
re

d
it
:
p

o
la

ro
id

 p
h

o
to

s
 b

y
 N

ic
k
 B

lu
th

 f
ro

m
 t
h

e
 N

o
u

n
 P

ro
je

c
t

R-tidy.sif
run

run

13OSG School 2025 - Software Portability

Why Use a Container?

Containers provide

● portability
● user control
● ease of use

and require no more technical skill than other methods of
installing software!

14OSG School 2025 - Software Portability

Words for Containers

container = the actively running ~thing~ that can run commands

container image = is the set of files that can be used to create
the container

"Launching" or "running" a container is the process of using the
"container image" to create the running "container"

"Building" is the process of creating the "container image" (and
often uses a pre-existing container image as the basis for the
new one)

15OSG School 2025 - Software Portability

Technology for Containers

https://apptainer.org/

+ Open source software

+ Does not require root to install

+ Beginner friendly syntax

- Fewer features

- No distribution system

https://www.docker.com/

+ Modern app interface (Docker Desktop)

+ Widely used distribution system
(DockerHub, analogous to GitHub)

- Non-intuitive syntax

- Requires root to install

- Commercial software

16OSG School 2025 - Software Portability

https://apptainer.org/
https://www.docker.com/

Technology for Containers

https://apptainer.org/

For beginners and those who only want to
run the container on the OSPool

https://www.docker.com/

For advanced users and those who want to
deploy container to many places

17OSG School 2025 - Software Portability

https://apptainer.org/
https://www.docker.com/

Use Existing Containers

• OSG provided: https://portal.osg-
htc.org/documentation/htc_workloads/using_software/available-
containers-list/

• OSG user provided (just a list, no descriptions):
https://github.com/opensciencegrid/cvmfs-singularity-
sync/blob/master/docker_images.txt

• Docker Hub: https://hub.docker.com/

18OSG School 2025 - Software Portability

https://portal.osg-htc.org/documentation/htc_workloads/using_software/available-containers-list/
https://portal.osg-htc.org/documentation/htc_workloads/using_software/available-containers-list/
https://portal.osg-htc.org/documentation/htc_workloads/using_software/available-containers-list/
https://github.com/opensciencegrid/cvmfs-singularity-sync/blob/master/docker_images.txt
https://github.com/opensciencegrid/cvmfs-singularity-sync/blob/master/docker_images.txt
https://hub.docker.com/

Explore Containers

$ apptainer shell docker://python:3.10

python:3.10

Apptainer> python3 --version

Python 3.10.14

19OSG School 2025 - Software Portability

Demo

$ apptainer shell docker://python:3.10

Apptainer> python3 --version

Python 3.10.14

ap40$ python3 --version

Python 3.9.19

Print Python version on Access Point

Build and run an apptainer container running Python 3.10

Print Python version inside Apptainer container

20OSG School 2025 - Software Portability

Create Apptainer Definition File

Create a file container.def with the following contents:

Bootstrap: docker
From: python:3.13

%post
 python3 -m pip install cowsay

21OSG School 2025 - Software Portability

Create Apptainer Definition File

Create a file container.def with the following contents:

Bootstrap: docker
From: python:3.13

%post
 python3 -m pip install cowsay

Tells Apptainer to use the DockerHub "python"
container with the tag* of "3.13"

The following commands should be used to modify
the container

Install the "cowsay" Python package

*In the case of the "python" container, the "tag" equals the version of python inside.

22OSG School 2025 - Software Portability

Choosing a base container

Search for your software + "container".

• Most big-name softwares have official containers online

Once identified, find the container "address", usually represented
in the form of a docker pull command:

docker pull user/repository:tag

Do not use the latest tag - choose an explicit one

23OSG School 2025 - Software Portability

What to install and where

• "Common" tools/libraries/packages are rarely included in
"official" containers; be sure to add what you need/want

• Dynamic items (scripts, input data) should not be included in
the container

• Recommend that user software is installed in the /opt folder

24OSG School 2025 - Software Portability

Build the Container Image

Build the container image file using the provided definition file

 apptainer build container.sif container.def

desired filename definition file

25OSG School 2025 - Software Portability

Apptainer Build Output

Output details what Apptainer is doing:

1. Download the base container image

2. Launch the base container image

3. Execute the commands from the %post section

4. Create the new container image file

When finished, should see a message like

INFO: Build complete: container.sif

26OSG School 2025 - Software Portability

Test the Apptainer Image

Test the container.sif container by launching it with

 apptainer shell -e container.sif

If you can get the "help" or "version" text for your desired
program, should be good to go.

27OSG School 2025 - Software Portability

Test the Apptainer Image

$ apptainer shell cowsay.sif

cowsay.sif

Apptainer> cowsay "hello"

| Hello |

 =====

 \

 \

 ^__^

 (oo)_______

 (__)\)\/\

 ||----w |

 || ||

28OSG School 2025 - Software Portability

Using Containers in Jobs

container_image = cowsay.sif

...usual submit options...

For today:

That's it!

29OSG School 2025 - Software Portability

Using Containers in Jobs

container_image = osdf:///ospool/ap40/username/cowsay.sif

...usual submit options...

Well… all other times:

More on OSDF tomorrow!

30OSG School 2025 - Software Portability

Differences between local & cluster use

With HTCondor,

containers are always run as the user and never as root

But…

official containers often assume you are running as root!

When testing a container, test as the user.

31OSG School 2025 - Software Portability

Common issues

Building Docker on a Mac (with ARM)
 → Make sure to include option --platform linux/amd64

Custom command not found
 → Manually add install location to your PATH at start of execution

Cannot create directory at /.cache
 → Manually set HOME or other environment variables at start of

execution

Cannot write file at /app/data, etc.
 → Change program to use relative path for execution, not absolute

32OSG School 2025 - Software Portability

Learn How to Build/ Use Containers

• OSG User Documentation:
https://portal.osg-htc.org/documentation/

• Videos:
• https://portal.osg-

htc.org/documentation/support_and_training/training/materials/

• https://www.youtube.com/watch?v=awSLTflAIJ8

33OSG School 2025 - Software Portability

https://portal.osg-htc.org/documentation/
https://portal.osg-htc.org/documentation/support_and_training/training/materials/
https://portal.osg-htc.org/documentation/support_and_training/training/materials/
https://www.youtube.com/watch?v=awSLTflAIJ8

Option 2: Bring Along Software
Files

34OSG School 2025 - Software Portability

Back to the Kitchen Analogy…

A backpacking approach
instead of a portable kitchen

–

Only bring the absolute
minimum!

Photo by Derrick Mercer on Flickr, CC-BY-SA 35OSG School 2025 - Software Portability

https://www.flickr.com/photos/dmer/
https://www.flickr.com/photos/dmer/1556329177/

Ways to Prepare Software Files

• Download pre-compiled software files

• Compile software yourself
• Generate a single binary file

• Create an installation with multiple binary files contained in a single
folder

We always need a “compiled” file that is compatible with the
version of Linux used by the execution point

36OSG School 2025 - Software Portability

Using Pre-Compiled Code

Some software providers have already done the hard work for
you!

You just need to

1. Find the right file

2. Download and extract the file

37OSG School 2025 - Software Portability

Find Pre-Compiled Code

• Search for your software and "Linux binary"

• Look for a .tar.gz file with keyword Linux and x86_64

38OSG School 2025 - Software Portability

Find Pre-Compiled Code

The exact process is
different for each software!

39OSG School 2025 - Software Portability

Compiling from Source Code

• Finding source code can be similar
process

• Once downloaded, usually need to
extract the code

• May need to clone a git repository

40OSG School 2025 - Software Portability

Compiling from Source Code
Source Code Binary

compiled +

dynamically linked into

run on

librariescompiler

and OS

uses

binary code by Kiran Shastry from the Noun Project
Source Code by Mohamed Mbarki from the Noun Project
Computer by rahmat from the Noun Project
books by Viral faisalovers from the Noun Project

41OSG School 2025 - Software Portability

Static Linking
Source Code Static Binary

compiled +

static linked into

librariescompiler

and OS

Book by Aleksandr Vector from the Noun Project

run anywhere

42OSG School 2025 - Software Portability

Compiling from Source Code

Most common: a three-step build process

1. ./configure # or cmake # configures the build process

2. make # does the compilation and linking

3. make install # moves compiled files to specific location(s)

Installation options (like where to install) are usually set at the
configure/cmake step

43OSG School 2025 - Software Portability

Compiling from Source Code

Advanced: Use a compiler (like gcc) directly

• Can use options to control compilation process

• We assume you know what you are doing!

44OSG School 2025 - Software Portability

What Kind of Code?

• Programs written in C, C++ and Fortran are typically compiled.

• For interpreted (scripting) languages like perl, Python, R, or
Julia:

• Don’t compile the scripts, but *do* use a compiled copy of the
underlying language interpreter.

(binary file)

Script Interpreter Binary

45OSG School 2025 - Software Portability

Using Software Files in Jobs

Executable

• Software must be a single
compiled binary file or single
script.

Wrapper Script

• Software can be in any
compiled format.

executable = program.exe

queue 1

executable = run_program.sh
transfer_input_files =
 program.tar.gz

#!/bin/bash
run_program.sh

tar –xzf program.tar.gz
program/bin/run in.dat

program.exe

46OSG School 2025 - Software Portability

Why Bring Along Software Files

• No Installation Required (sometimes)
• Software releases that are pre-compiled for Linux don’t need any

compiling or installation!

• No Docker/Apptainer Required
• Not all computers in the OSPool support containers

• Lightweight
• Rely on the execution point's operating system for most things

47OSG School 2025 - Software Portability

Next Steps

48OSG School 2025 - Software Portability

Using Software in a HTC System

• Create or find software files:
• Put them in a container (or find a container that has them already)

• Download them in a tar.gz or .zip file

• Make a tar.gz file with code you have built

• Declare necessary files, requirements in your submit file

• If needed, write a wrapper script to set up the environment
when the job runs.

49OSG School 2025 - Software Portability

Choosing a Software Method

Containers

+ Easy to deploy

+ Consistent environment

+ Best for complex programs

- Building image can be difficult

- Image file can be large

Bring-along-files

+ Standalone binaries Just Work

+ Lightweight

- Execution points have inconsistent
environments

- Not suitable for programs with lots
of dependencies

50OSG School 2025 - Software Portability

Installing Software

Software installation can be hard.

• Make sure to read the instructions for installing your
software, especially the requirements

• The last error message you see may not be the same as the
first error message that caused it..

• Test, test, test!

51OSG School 2025 - Software Portability

Work Time

1. Go through the introductory exercises

2. Then, choose an approach for *your* software and try to find
or make a portable version for OSPool jobs.

3. Ask for help!

Additional guides are at portal.osg-htc.org/documentation

52OSG School 2025 - Software Portability

https://portal.osg-htc.org/documentation

Acknowledgements

This work is supported by NSF under Cooperative
Agreement OAC-2030508 as part of the PATh Project. Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not
necessarily reflect the views of the NSF.

53OSG School 2025 - Software Portability

https://www.nsf.gov/div/index.jsp?div=OAC
https://www.nsf.gov/awardsearch/showAward?AWD_ID=2030508
https://path-cc.io/

Appendix: Container and
Compiling Tips

54OSG School 2025 - Software Portability

Best Practices in Using Containers on OSG

● Don’t use the latest tag in images

● Use version number/specific names in the images

● Test images with apptainer shell

● Unique image name eliminates the risk of running a job
using previous versions due to stashing.

55

Where to install software?

● Do not use $HOME, /root or /srv
○ Container will run as some user we do not know yet, so $HOME is not

known and will be mounted over
○ /root is not available to unprivileged users
○ /srv is used a job cwd in many cases

● /opt or /usr/local are good choices

56

	Slide 1: Backpacking with Code: Software Portability for HTC
	Slide 2: Goals For This Session
	Slide 3: Introduction
	Slide 4: Imagine that we asked you to go home and bake a cake...
	Slide 5: An Analogy
	Slide 6: On Your Computer
	Slide 7: OSPool: Other People’s Computers
	Slide 8: The Challenge
	Slide 9: On Someone Else’s Computer
	Slide 10: The Solution
	Slide 11: Option 1: Containers
	Slide 12: Returning to Our Analogy…
	Slide 13: Containers
	Slide 14: Why Use a Container?
	Slide 15: Words for Containers
	Slide 16: Technology for Containers
	Slide 17: Technology for Containers
	Slide 18: Use Existing Containers
	Slide 19: Explore Containers
	Slide 20: Demo
	Slide 21: Create Apptainer Definition File
	Slide 22: Create Apptainer Definition File
	Slide 23: Choosing a base container
	Slide 24: What to install and where
	Slide 25: Build the Container Image
	Slide 26: Apptainer Build Output
	Slide 27: Test the Apptainer Image
	Slide 28: Test the Apptainer Image
	Slide 29: Using Containers in Jobs
	Slide 30: Using Containers in Jobs
	Slide 31: Differences between local & cluster use
	Slide 32: Common issues
	Slide 33: Learn How to Build/ Use Containers
	Slide 34: Option 2: Bring Along Software Files
	Slide 35: Back to the Kitchen Analogy…
	Slide 36: Ways to Prepare Software Files
	Slide 37: Using Pre-Compiled Code
	Slide 38: Find Pre-Compiled Code
	Slide 39: Find Pre-Compiled Code
	Slide 40: Compiling from Source Code
	Slide 41: Compiling from Source Code
	Slide 42: Static Linking
	Slide 43: Compiling from Source Code
	Slide 44: Compiling from Source Code
	Slide 45: What Kind of Code?
	Slide 46: Using Software Files in Jobs
	Slide 47: Why Bring Along Software Files
	Slide 48: Next Steps
	Slide 49: Using Software in a HTC System
	Slide 50: Choosing a Software Method
	Slide 51: Installing Software
	Slide 52: Work Time
	Slide 53: Acknowledgements
	Slide 54: Appendix: Container and Compiling Tips
	Slide 55: Best Practices in Using Containers on OSG
	Slide 56: Where to install software?

