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Goals For This Session

• Describe what it means to make software “portable.”

• Compare and contrast software portability techniques. 

• Choose the best portability technique for your software. 

• Build a portable software environment.
• Follow steps to build a container

• Compile code on a Linux computer
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Introduction
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Imagine that we asked you to 
go home and bake a cake...
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An Analogy

Running software on your own 
computer is like cooking in your 
own kitchen.

Photo by jschantz on flickr, CC-BY
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On Your Computer

• You know what is there.
• All the software you need is already installed.

• You know where everything is (mostly). 

• You have full control.
• You can add new programs when and where you want.
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OSPool: Other People’s Computers
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The Challenge

Running code on someone 
else’s computer is like cooking 
in someone else’s kitchen.

Photo by F Deventhal on Wikimedia, CC-BY
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https://www.flickr.com/people/krossbow/
https://commons.wikimedia.org/wiki/File:Julia_Child%27s_Kitchen_-_Smithsonian.jpg


On Someone Else’s Computer

• What’s already there? 
• Is R installed? Or Python? What about the packages you need? 

• If the software you need is installed, do you know where it is or 
how to access it? 

• Are you allowed to change whatever you want? 
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The Solution

• Imagine going camping or 
backpacking – what do you need 
to do to cook anywhere? 

• Similarly: take your software with 
you to any computer. 

• This is what it means to make 
software portable. 

Photo by andrew welch on Unsplash 
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https://unsplash.com/@andrewwelch3?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
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Option 1: Containers
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Returning to Our Analogy…

Using a container is like bringing along a whole kitchen. 

Photo by PunkToad on Flickr, CC-BY 12OSG School 2025 - Software Portability

https://www.flickr.com/photos/punktoad/
https://www.flickr.com/photos/83699771@N00/9123847716


Containers

Containers are a tool for capturing an entire “environment” 
(software, libraries, operating system) into an “image” that can be 
run and used as the environment for a job
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Why Use a Container?

Containers provide

● portability
● user control
● ease of use

and require no more technical skill than other methods of 
installing software!
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Words for Containers

container = the actively running ~thing~ that can run commands

container image = is the set of files that can be used to create 
the container

"Launching" or "running" a container is the process of using the 
"container image" to create the running "container"

"Building" is the process of creating the "container image"  (and 
often uses a pre-existing container image as the basis for the 
new one)
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Technology for Containers

https://apptainer.org/

+ Open source software

+ Does not require root to install

+ Beginner friendly syntax

- Fewer features

- No distribution system

https://www.docker.com/

+ Modern app interface (Docker Desktop)

+ Widely used distribution system 
(DockerHub, analogous to GitHub)

- Non-intuitive syntax

- Requires root to install

- Commercial software
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https://apptainer.org/
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Technology for Containers

https://apptainer.org/

For beginners and those who only want to 
run the container on the OSPool

https://www.docker.com/

For advanced users and those who want to 
deploy container to many places
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https://www.docker.com/


Use Existing Containers

• OSG provided: https://portal.osg-
htc.org/documentation/htc_workloads/using_software/available-
containers-list/ 

• OSG user provided (just a list, no descriptions): 
https://github.com/opensciencegrid/cvmfs-singularity-
sync/blob/master/docker_images.txt 

• Docker Hub: https://hub.docker.com/ 
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Explore Containers

$ apptainer shell docker://python:3.10

python:3.10

Apptainer> python3 --version

Python 3.10.14
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Demo

$ apptainer shell docker://python:3.10

Apptainer> python3 --version

Python 3.10.14

ap40$ python3 --version

Python 3.9.19

Print Python version on Access Point

Build and run an apptainer container running Python 3.10

Print Python version inside Apptainer container
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Create Apptainer Definition File

Create a file container.def with the following contents:

Bootstrap: docker
From: python:3.13

%post
 python3 -m pip install cowsay
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Create Apptainer Definition File

Create a file container.def with the following contents:

Bootstrap: docker
From: python:3.13

%post
 python3 -m pip install cowsay

Tells Apptainer to use the DockerHub "python" 
container with the tag* of "3.13"

The following commands should be used to modify 
the container

Install the "cowsay" Python package

*In the case of the "python" container, the "tag" equals the version of python inside.
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Choosing a base container

Search for your software + "container".

• Most big-name softwares have official containers online

Once identified, find the container "address", usually represented 
in the form of a docker pull command:

docker pull user/repository:tag

Do not use the latest tag - choose an explicit one

23OSG School 2025 - Software Portability



What to install and where

• "Common" tools/libraries/packages are rarely included in 
"official" containers; be sure to add what you need/want

• Dynamic items (scripts, input data) should not be included in 
the container

• Recommend that user software is installed in the /opt folder
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Build the Container Image

Build the container image file using the provided definition file

 apptainer build container.sif container.def

desired filename definition file

25OSG School 2025 - Software Portability



Apptainer Build Output

Output details what Apptainer is doing:

1. Download the base container image

2. Launch the base container image

3. Execute the commands from the %post section

4. Create the new container image file 

When finished, should see a message like 

INFO: Build complete: container.sif
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Test the Apptainer Image

Test the container.sif container by launching it with

 apptainer shell -e container.sif

If you can get the "help" or "version" text for your desired 
program, should be good to go. 
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Test the Apptainer Image

$ apptainer shell cowsay.sif

cowsay.sif

Apptainer> cowsay "hello"

 _____

| Hello | 

 =====

    \

     \

     ^__^

      (oo)\_______

      (__)\    )\/\

       ||----w |

       ||   ||
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Using Containers in Jobs

container_image = cowsay.sif

...usual submit options...

For today:

That's it!
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Using Containers in Jobs

container_image = osdf:///ospool/ap40/username/cowsay.sif

...usual submit options...

Well… all other times:

More on OSDF tomorrow!
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Differences between local & cluster use

With HTCondor, 

containers are always run as the user and never as root 

But… 

official containers often assume you are running as root! 

When testing a container, test as the user. 
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Common issues

Building Docker on a Mac (with ARM)
 → Make sure to include option --platform linux/amd64

Custom command not found 
 → Manually add install location to your PATH at start of execution

Cannot create directory at /.cache 
 → Manually set HOME or other environment variables at start of 

execution

Cannot write file at /app/data, etc.
 → Change program to use relative path for execution, not absolute
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Learn How to Build/ Use Containers

• OSG User Documentation: 
https://portal.osg-htc.org/documentation/

• Videos:
• https://portal.osg-

htc.org/documentation/support_and_training/training/materials/ 

• https://www.youtube.com/watch?v=awSLTflAIJ8 
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Option 2: Bring Along Software 
Files
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Back to the Kitchen Analogy…

A backpacking approach 
instead of a portable kitchen 

– 

Only bring the absolute 
minimum!

Photo by Derrick Mercer on Flickr, CC-BY-SA 35OSG School 2025 - Software Portability

https://www.flickr.com/photos/dmer/
https://www.flickr.com/photos/dmer/1556329177/


Ways to Prepare Software Files

• Download pre-compiled software files

• Compile software yourself
• Generate a single binary file

• Create an installation with multiple binary files contained in a single 
folder

We always need a “compiled” file that is compatible with the 
version of Linux used by the execution point
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Using Pre-Compiled Code

Some software providers have already done the hard work for 
you!

You just need to

1. Find the right file

2. Download and extract the file
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Find Pre-Compiled Code

• Search for your software and "Linux binary"

• Look for a .tar.gz file with keyword Linux and x86_64
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Find Pre-Compiled Code

The exact process is 
different for each software!
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Compiling from Source Code

• Finding source code can be similar 
process

• Once downloaded, usually need to 
extract the code

• May need to clone a git repository
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Compiling from Source Code
Source Code Binary

compiled + 

dynamically linked into

run on

librariescompiler

and OS

uses

binary code by Kiran Shastry from the Noun Project
Source Code by Mohamed Mbarki from the Noun Project
Computer by rahmat from the Noun Project
books by Viral faisalovers from the Noun Project
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Static Linking
Source Code Static Binary

compiled + 

static linked into

librariescompiler

and OS

Book by Aleksandr Vector from the Noun Project

run anywhere
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Compiling from Source Code

Most common: a three-step build process 

1.  ./configure # or cmake # configures the build process

2.  make # does the compilation and linking

3.  make install # moves compiled files to specific location(s)

Installation options (like where to install) are usually set at the 
configure/cmake step
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Compiling from Source Code

Advanced: Use a compiler (like gcc) directly

• Can use options to control compilation process

• We assume you know what you are doing!
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What Kind of Code?

• Programs written in C, C++ and Fortran are typically compiled. 

• For interpreted (scripting) languages like perl, Python, R, or 
Julia: 

• Don’t compile the scripts, but *do* use a compiled copy of the 
underlying language interpreter.

(binary file)

Script Interpreter Binary
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Using Software Files in Jobs

Executable

• Software must be a single 
compiled binary file or single 
script. 

Wrapper Script

• Software can be in any 
compiled format.

executable = program.exe

queue 1

executable = run_program.sh
transfer_input_files = 
           program.tar.gz

#!/bin/bash
# run_program.sh

tar –xzf program.tar.gz
program/bin/run in.dat

program.exe
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Why Bring Along Software Files

• No Installation Required (sometimes)
• Software releases that are pre-compiled for Linux don’t need any 

compiling or installation! 

• No Docker/Apptainer Required
• Not all computers in the OSPool support containers

• Lightweight
• Rely on the execution point's operating system for most things
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Next Steps
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Using Software in a HTC System

• Create or find software files:
• Put them in a container (or find a container that has them already)

• Download them in a tar.gz or .zip file

• Make a tar.gz file with code you have built

• Declare necessary files, requirements in your submit file

• If needed, write a wrapper script to set up the environment 
when the job runs. 
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Choosing a Software Method

Containers

+ Easy to deploy

+ Consistent environment

+ Best for complex programs

- Building image can be difficult

- Image file can be large

Bring-along-files

+ Standalone binaries Just Work

+ Lightweight

- Execution points have inconsistent 
environments

- Not suitable for programs with lots 
of dependencies
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Installing Software

Software installation can be hard.

• Make sure to read the instructions for installing your 
software, especially the requirements

• The last error message you see may not be the same as the 
first error message that caused it..

• Test, test, test!
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Work Time

1. Go through the introductory exercises

2. Then, choose an approach for *your* software and try to find 
or make a portable version for OSPool jobs. 

3. Ask for help!

Additional guides are at portal.osg-htc.org/documentation
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Appendix: Container and 
Compiling Tips
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Best Practices in Using Containers on OSG

● Don’t use the latest tag in images

● Use version number/specific names in the images

● Test images with apptainer shell

● Unique image name eliminates the risk of running a job 
using previous versions due to stashing.
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Where to install software?

● Do not use $HOME, /root or /srv
○ Container will run as some user we do not know yet, so $HOME is not 

known and will be mounted over
○ /root is not available to unprivileged users
○ /srv is used a job cwd in many cases

● /opt or /usr/local are good choices
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