
OSG School 2025 - Scaling 6/26/2025

Scaling Up and Building
Independence in Research

Computing
Daniel Morales and Christina Koch

OSG School 2025
June 26, 2025

OSG School 2025 - Scaling 6/26/2025 2

In
st

al
lin

g
So

ftw
ar

e

on
 th

e
OS

Po
ol

Using HTCondor
on the OSPool

M
anaging Data on the

OSPool

OSG School 2025 - Scaling 6/26/2025 3

Using HTCondor
on the OSPool

M
anaging Data on the

OSPool

Scaling Up
our HTC

Workflows

In
st

al
lin

g
So

ftw
ar

e

on
 th

e
OS

Po
ol

OSG School 2025 - Scaling 6/26/2025

Scaling: Job Submissions

4

OSG School 2025 - Scaling 6/26/2025

Optimize Software Only after It Works
Correctly

5

1. Run a single job. 2. Test a workload of
5-10 jobs.

3. Scale up to
100s-1000s of jobs

OSG School 2025 - Scaling 6/26/2025

Stage 1: Run a Single Job

For each job type, get a test job working reliably
& tune resource needs

1. Assemble job components: executable, inputs, arguments, etc.*
2. Estimate initial resource needs*
3. Write a submit file
4. Submit!
5. Review all outputs, including log, output, and error files, Check

actual resource usage and update resource needs*
6. Repeat until (fairly) accurate and reliable

* More details on next slide and in Appendix B

6

OSG School 2025 - Scaling 6/26/2025

Components of a Job: The Game Plan

Submitting 100s-1000s of jobs, requires a little bit of
planning.
As you scale up, ask yourself the following:

● File Management:
• Which files change or are shared between jobs?
• Which files do you expect to generate per job?

● Scripting:
• What parts of your executable vary or stay the same

between jobs?
• What variables does your executable use between jobs?

Think about the best practices from the following
slides.

7

Stop & Plan!

OSG School 2025 - Scaling 6/26/2025

Components of a Job: Executable

A generalized executable & submit file is preferred!

When generalizing, think about:
1. What portions of your executable are shared across your jobs?

• These sections can be “hard-coded” into the executable
2. What portions of your executable vary across your jobs?

• Use arguments and variables to express these

* More details on next slide and in Appendix B

8

OSG School 2025 - Scaling 6/26/2025

Components of a Job: Executable
Ex. Counting variations of a word in a book

A generalized executable & submit file is preferred!

When generalizing, think about:
1. What portions of your executable are shared across your jobs?

• These sections can be “hard-coded” into the executable
2. What portions of your executable vary across your jobs?

• Use arguments and variables to express these

9

#!/bin/bash

./word-variations.py Alice_in_Wonderland.txt Dodo > variations.Dodo.txt

Think About
It!

#!/bin/bash

./word-variations.py Alice_in_Wonderland.txt Dodo > variations.Dodo.txt

executable = words.sh

transfer_input_files = Alice_in_Wonderland.txt
queue 1

w
or

ds
.s

ub
w

or
ds

.s
h

Dodo
Bird
Cat
Glass

OSG School 2025 - Scaling 6/26/2025

Components of a Job: Executable
Ex. Counting variations of a word in a book

A generalized executable & submit file is preferred!

When generalizing, think about:
1. What portions of your executable are shared across your jobs?

• These sections can be “hard-coded” into the executable
2. What portions of your executable vary across your jobs?

• Use arguments and variables to express these

10

#!/bin/bash

./word-variations.py Alice_in_Wonderland.txt Dodo > variations.Dodo.txt

Think About
It!

#!/bin/bash

./word-variations.py Alice_in_Wonderland.txt "$1" > "variations.$1.txt"

executable = words.sh
arguments = $(word)

transfer_input_files = Alice_in_Wonderland.txt
queue word from list_of_words.txtw

or
ds

.s
ub

w
or

ds
.s

h

OSG School 2025 - Scaling 6/26/2025

Components of a Job: Executable
Ex. Counting variations of a word in a book

A generalized executable & submit file is preferred!

When generalizing, think about:
1. What portions of your executable are shared across your jobs?

• These sections can be “hard-coded” into the executable
2. What portions of your executable vary across your jobs?

• Use arguments and variables to express these

11

#!/bin/bash

./word-variations.py Alice_in_Wonderland.txt Dodo > variations.Dodo.txt

Think About
It!

#!/bin/bash

./word-variations.py Alice_in_Wonderland.txt "$1" > "variations.$1.txt"

executable = words.sh
arguments = $(word)

transfer_input_files = Alice_in_Wonderland.txt
queue word from list_of_words.txtw

or
ds

.s
ub

w
or

ds
.s

h

Dodo
Bird
Cat
Glass

list_of_words.txt

OSG School 2025 - Scaling 6/26/2025

Components of a Job: Executable
Ex. Counting variations of a word in ANY book

A generalized executable & submit file is preferred!

When generalizing, think about:
1. What portions of your executable are shared across your jobs?

• These sections can be “hard-coded” into the executable
2. What portions of your executable vary across your jobs?

• Use arguments and variables to express these

12

#!/bin/bash

./word-variations.py Alice_in_Wonderland.txt Dodo > variations.Dodo.txt

Think About
It!

#!/bin/bash

./word-variations.py Alice_in_Wonderland.txt “$1” > “variations.$1.txt”

executable = words.sh
arguments = $(word)

transfer_input_files = Alice_in_Wonderland.txt
queue word from list_of_words.txtw

or
ds

.s
ub

w
or

ds
.s

h

Alice_in_Wonderland.txt,Dodo
Alice_in_Wonderland.txt,Bird
Alice_in_Wonderland.txt,Cat
Jurrasic_Park.txt,Dodo
Jurrasic_Park.txt,Bird
Jurrasic_Park.txt,Cat

list_of_words.txt

OSG School 2025 - Scaling 6/26/2025

Components of a Job: Executable
Ex. Counting variations of a word in ANY book

A generalized executable & submit file is preferred!

When generalizing, think about:
1. What portions of your executable are shared across your jobs?

• These sections can be “hard-coded” into the executable
2. What portions of your executable vary across your jobs?

• Use arguments and variables to express these

13

#!/bin/bash

./word-variations.py Alice_in_Wonderland.txt Dodo > variations.Dodo.txt

Think About
It!

#!/bin/bash

./word-variations.py “$2” “$1” > “variations.$1.$2.txt”

executable = words.sh
arguments = $(word) $(book)

transfer_input_files = $(book)
queue book, word from list_of_words.txtw

or
ds

.s
ub

w
or

ds
.s

h

Alice_in_Wonderland.txt,Dodo
Alice_in_Wonderland.txt,Bird
Alice_in_Wonderland.txt,Cat
Jurrasic_Park.txt,Dodo
Jurrasic_Park.txt,Bird
Jurrasic_Park.txt,Cat

list_of_words.txt

OSG School 2025 - Scaling 6/26/2025 14

Your jobs run…you return 6 months later to run a new dataset

OSG School 2025 - Scaling 6/26/2025

Components of a Job: Executable
Ex. Counting variations of a word in ANY book

A generalized executable & submit file is preferred!

When generalizing, think about:
1. What portions of your executable are shared across your jobs?

• These sections can be “hard-coded” into the executable
2. What portions of your executable vary across your jobs?

• Use arguments and variables to express these

15

#!/bin/bash

./word-variations.py Alice_in_Wonderland.txt Dodo > variations.Dodo.txt

Think About
It!

#!/bin/bash

./word-variations.py “$2” “$1” > “variations.$1.$2.txt”

executable = words.sh
arguments = $(word) $(book)

transfer_input_files = $(book)
queue book, word from list_of_words.txtw

or
ds

.s
ub

w
or

ds
.s

h

Alice_in_Wonderland.txt,Dodo
Alice_in_Wonderland.txt,Bird
Alice_in_Wonderland.txt,Cat
Jurrasic_Park.txt,Dodo
Jurrasic_Park.txt,Bird
Jurrasic_Park.txt,Cat

list_of_words.txt

OSG School 2025 - Scaling 6/26/2025

Components of a Job: Executable
Ex. Counting variations of a word in ANY book

A generalized executable & submit file is preferred!

When generalizing, think about:
1. What portions of your executable are shared across your jobs?

• These sections can be “hard-coded” into the executable
2. What portions of your executable vary across your jobs?

• Use arguments and variables to express these

16

#!/bin/bash

./word-variations.py Alice_in_Wonderland.txt Dodo > variations.Dodo.txt

Think About
It!

#!/bin/bash

./word-variations.py “$2” “$1” > “variations.$1.$2.txt”
#./word-variations.py Alice_in_Wonderland.txt Dodo > variations.Dodo.txt

executable = words.sh
arguments = $(word) $(book)

transfer_input_files = $(book)
queue book, word from list_of_words.txtw

or
ds

.s
ub

w
or

ds
.s

h

Alice_in_Wonderland.txt,Dodo
Alice_in_Wonderland.txt,Bird
Alice_in_Wonderland.txt,Cat
Jurrasic_Park.txt,Dodo
Jurrasic_Park.txt,Bird
Jurrasic_Park.txt,Cat

list_of_words.txt

OSG School 2025 - Scaling 6/26/2025

Components of a Job: Executable
Ex. Counting variations of a word in ANY book

A generalized executable & submit file is preferred!

When generalizing, think about:
1. What portions of your executable are shared across your jobs?

• These sections can be “hard-coded” into the executable
2. What portions of your executable vary across your jobs?

• Use arguments and variables to express these

17

#!/bin/bash

./word-variations.py Alice_in_Wonderland.txt Dodo > variations.Dodo.txt

Think About
It!

#!/bin/bash
word="$1"
book="$2"
./word-variations.py "$book" "$word" > "variations.$word.$book.txt"

executable = words.sh
arguments = $(word) $(book)

transfer_input_files = $(book)
queue book, word from list_of_words.txtw

or
ds

.s
ub

w
or

ds
.s

h

Alice_in_Wonderland.txt,Dodo
Alice_in_Wonderland.txt,Bird
Alice_in_Wonderland.txt,Cat
Jurrasic_Park.txt,Dodo
Jurrasic_Park.txt,Bird
Jurrasic_Park.txt,Cat

list_of_words.txt

OSG School 2025 - Scaling 6/26/2025

Don't Repeat Yourself (or Others)

• Christina’s rule of thumb: If I have copy + pasted something
more than twice, it should be a variable.
#!/bin/bash

condor_status -const 'Gpus > 0' >> 2024-08-08-gpus.txt
diff ref.txt 2024-08-08-gpus.txt >> 2024-08-08-gpus.txt.diff

#!/bin/bash

DATE=2024-08-08
RESULT=${DATE}-gpus.txt
condor_status -const 'Gpus > 0' >> $RESULT
diff ref.txt $RESULT >> $RESULT.diff

18

OSG School 2025 - Scaling 6/26/2025

Components of a Job:
Managing Files

19

OSG School 2025 - Scaling 6/26/2025

Components of a Job: Managing Files

20

OSG School 2025 - Scaling 6/26/2025

Components of a Job: Managing Files

Organization is critical to scaling up jobs on the OSPool!

Before beginning any computational project, consider:
1. Directory Structure

• Create separate folders for inputs, outputs, logs, and scripts.
2. File Naming Conventions

• Use consistent, descriptive names (sample_A1_reads.fastq).
3. Separation of Shared vs. Job-Specific Files
4. Reproducibility and Reusability

• Use version-controlled scripts and log job parameters with outputs.

21

OSG School 2025 - Scaling 6/26/2025

Components of a Job: Managing Files
Directory Structure - Organizing Files and Directories
Directory structure and an
organizational plan is step 0 of any
scaled HTC workflow.

• Use separate folders for inputs,
outputs, and logs.

• Use flat and shallow structures
• Keep job-specific files local

/home/
• Place shared files in

/ospool/ap##/data/.
• Group logs by type: log/, error/,

and output/ for easy
troubleshooting.

22

Example Directory Structure:
├── /home/<user.name>/
│ ├── <project_name>/
│ │ ├── inputs/ # Job-specific inputs
│ │ ├── outputs/ # Job-generated outputs
│ │ ├── logs/ # Log files
│ │ │ ├── log/ # condor log files
│ │ │ ├── error/ # stderr
│ │ │ ├── output/ # stdout
├── /ospool/ap40/data/<user.name>/
│ ├── <project_name>/
│ │ ├── inputs/ # Shared input files
│ │ ├── software/ # Containers

OSG School 2025 - Scaling 6/26/2025

Components of a Job: Managing Files
File Naming Conventions
Always use a consistent file naming
convention!

• Use lowercase letters, numbers, and
underscores

• Avoid spaces and special characters

• Be consistent and descriptive

• Include processing step or tool in
the name if applicable

• Use unique names for file versions
• ⚠This is especially important for

files on the OSDF!⚠

23

Example Directory Structure:
├── /home/<user.name>/
│ ├── <project_name>/
│ │ ├── inputs/ # Job-specific inputs
│ │ ├── outputs/ # Job-generated outputs
│ │ ├── logs/ # Log files
│ │ │ ├── log/ # condor log files
│ │ │ ├── error/ # stderr
│ │ │ ├── output/ # stdout
├── /ospool/ap40/data/<user.name>/
│ ├── <project_name>/
│ │ ├── inputs/ # Shared input files
│ │ │ ├── v4_Celegans_N2_ref_genome.fa
│ │ ├── software/ # Containers

Jenny Bryan How to Name Files Tutorial:
https://github.com/jennybc/how-to-name-files

https://github.com/jennybc/how-to-name-files

OSG School 2025 - Scaling 6/26/2025

Components of a Job: Managing Files
Separating Job-Specific and Shared Files
Job-Specific Files

These files are unique to each job and typically small in
size.

Examples:

• Read subsets (e.g., reads_001.fastq)

• Job argument files (e.g., input_ids.txt)

• Condor log, output, and error files

• Temporary/intermediate files

• Per-job config or metadata (e.g., params_42.json)

Why here?

• These files are often created or modified during the
job.

• They're not reused across jobs, so storing them
locally avoids unnecessary staging overhead.

24

Job Shared Files

These files are read-only and shared across many jobs.

Examples:

• Software containers (e.g., minimap2.sif)

• Reference genomes

• Pre-built indexes (e.g., ref.mmi, genome.fai)

• Models, Databases, or fixed datasets

Why here?

• These files are large, used across many jobs, and do
not change.

• The OSDF protocol caches copies of these files near
EPs

OSG School 2025 - Scaling 6/26/2025

Components of a Job: Managing Files
Reproducibility and Reusability with Version Control
Why Version Control Matters in HTC Projects

• Tracks every change to your code and config

• Helps debug errors by rolling back to known-good
states

• Makes your workflow portable and shareable

Best Practices for Version Control

• Use Git for scripts, config files, and README
documentation

• Commit early and often, especially before
large-scale job submissions

• Use meaningful commit messages

• Push your code to a remote repository (GitHub,
GitLab, etc.) to back it up

25

Software Carpentries Git Tutorials:
https://swcarpentry.github.io/git-novice/

https://swcarpentry.github.io/git-novice/

OSG School 2025 - Scaling 6/26/2025

Stage 1: Tips for Initial Test Jobs

● Select smaller data sets or subsets of data for your first test jobs

● Request 1 CPU, 4-16GB of RAM, estimate disk

● Pick test jobs that will reproduce results, if possible

● Name files carefully (more on this later)

● Make sure you understand and can run your software
○ Software — executable, dependencies, maybe a wrapper script to

prepare environment
○ Command-line arguments
○ Input files

26

OSG School 2025 - Scaling 6/26/2025

Stage 2: Run a Small Workload

Scale up to ~10 jobs, checking reliability & Access Point
resource demand
● Try a representative variety of arguments and input files
● Start developing methods for checking results of all jobs

● Checking 1 job is easy; checking 10 is tedious; checking 1000s by
hand?

● Estimate total resource needs (quotas) for the
Access Point itself

● Repeat tests at this scale until issues are fixed
& resources are accurate

27

OSG School 2025 - Scaling 6/26/2025

Stage 3: Scale Up!

Continue scaling up in 10–100× increments, checking for &
fixing issues
As you scale up, a challenge is to distinguish among:

● Real issues with your jobs
● Real issues with SOME of your jobs
● Temporary issues with the OSPool/Access Point
● Bugs and other longer-lasting issues with the

infrastructure
● (We can help! Email us with support requests if you get

stuck.)

Think about the best practices from the following slides.

28

OSG School 2025 - Scaling 6/26/2025

Scaling: Computing Strategy

29

OSG School 2025 - Scaling 6/26/2025

OSG School Secret Agenda

Learn about HTC methods (and
mechanics) and apply them to
your work

30

Make intentional choices about
how you approach computing.

OSG School 2025 - Scaling 6/26/2025

Expanding Our Understanding

31

Copy and paste
submit files.

Write own
submit files

and customize

Explain why
using a

computing
system will

help you.

Decide what
computing

approach to
use for your

work.

OSG School 2025 - Scaling 6/26/2025

Computing Problem Flavors

32

● List of tasks
○ data processing
○ probabilistic style

simulations
○ and many more!

● Approach: lots of cores
○ Multiple cores on a

server
○ HTC jobs
○ Job array

OSG School 2025 - Scaling 6/26/2025

Computing Problem Flavors

33

● Coordinated sub-tasks
○ optimization problems

(including machine learning
training!)

○ physical system
simulations

● Approach: lots of cores
working together
○ HPC cluster
○ Node with multiple cores
○ GPUs

OSG School 2025 - Scaling 6/26/2025

Computing Problem Flavors

34

● Reading in lots of data
○ image combination, genome

assembly
● Approach: lots of memory

● Long running processes
○ MCMC chains.

● Approach: …

OSG School 2025 - Scaling 6/26/2025

Computing Solution Considerations

● Scale
○ Local server → Local cluster → National system

● "Style"
○ Optimized for multi-core, multi-node work (traditional HPC cluster)
○ Optimized for multiple jobs (HTC system like OSPool)
○ Focus on special hardware: GPUs, memory

● Service model
○ Allocations? Monetary cost? Buy-in?

● Security

35

Exercises today comparing the CHTC pool and OSPool

OSG School 2025 - Scaling 6/26/2025

Trade-Offs: Resources

You will not always have a perfect resource for your problem!
Some questions to consider:
● What does your computing problem/approach need?
● What computing resources do you have?
● What resources could you have? With how much effort?
● Is that effort worth it?
● Would your outcome change if changed your approach?
● How much effort would that take?

36

OSG School 2025 - Scaling 6/26/2025

Trade-Offs: Automation

● Once you have an
approach and resource,
consider automating your
work.

● Possibilities:
○ Uploading and

downloading files
○ Checking for errors
○ Reviewing job information

(run times, memory usage)

37

https://xkcd.com/1205/ (the chart above)

https://xkcd.com/1319/ (less optimistic)

https://xkcd.com/1205/
https://xkcd.com/1319/

OSG School 2025 - Scaling 6/26/2025

Trade-Offs: Motivation

You will not always care about all this!
Let's just get s*** done!

● Start small.
● Know what's important to you.
● Connect with others.

38

OSG School 2025 - Scaling 6/26/2025

Revisiting HTC

• What components do you need for your HTC workload?
• Scaling Up

• Where are you in the scaling up process?
• What are three things to consider in your current stage?

• What organizational strategy makes sense for the next steps in
your analysis?

• Consider the balance between human effort (yours!) and
computer time; will the use of HTC actually save you time in the
long run and improve your research?

39

OSG School 2025 - Scaling 6/26/2025

Scaling: Your Skills

40

OSG School 2025 - Scaling 6/26/2025

What does success look like?

• Achieving independence
in research computing
doesn’t mean you know
everything!

• Becoming an HTC
Practitioner

• Understand core concepts
• Know what questions to

ask (how to Google!)
• Can use documentation to

solve problems
https://carpentries.github.io/instructor-training/02-practice-learning.html

See more in Appendix A

41

https://www.dotkam.com/2007/05/07/the-seven-stages-of-expertise-in-software-engineering/
https://carpentries.github.io/instructor-training/02-practice-learning.html

OSG School 2025 - Scaling 6/26/2025

Becoming an (HTC) Practitioner

In general:
• Building mental models of

the topic
• Lots of practice, learning

from mistakes
• Looking at examples
• Mentorship from other

practitioners

At the OSG School:

• Lectures on big picture
concepts (with analogies,
examples)

• Hands on exercises

• Consultations and support
from staff

42

OSG School 2025 - Scaling 6/26/2025

Learning HTC

• What does “independence in research computing” mean to
you?

• When learning something new what resources out in the world
have been transformative for you in becoming an independent
practitioner? What made you feel part of a community?

• Did you know about our guides? How could we make them
more “findable?” Which is most useful (in your opinion)? What
is missing?

43

OSG School 2025 - Scaling 6/26/2025

Resources We Have Now

• Guides/Documentation
• OSPool Guides: https://portal.osg-htc.org/documentation/
• HTCondor Manual: https://htcondor.readthedocs.io/en/latest/index.html

• Tutorials
• Tutorials on our main docs page

• https://portal.osg-htc.org/documentation/htc_workloads/submitting_workloads/tutorial-command/

• Or on GitHub: https://github.com/OSGConnect/
• Or some default notebooks: https://notebook.ospool.osg-htc.org/

• OSG School materials: https://osg-htc.org/school-2025/materials/
• Videos and Slides

• YouTube: https://www.youtube.com/channel/UCVxyV0Lr1KiTeq7bTw3gwLw
• Training materials: https://portal.osg-htc.org/documentation/support_and_training/training/osgusertraining/

44

https://portal.osg-htc.org/documentation/
https://htcondor.readthedocs.io/en/latest/index.html
https://portal.osg-htc.org/documentation/htc_workloads/submitting_workloads/tutorial-command/
https://github.com/OSGConnect/
https://notebook.ospool.osg-htc.org/
https://osg-htc.org/school-2025/materials/
https://www.youtube.com/channel/UCVxyV0Lr1KiTeq7bTw3gwLw
https://portal.osg-htc.org/documentation/support_and_training/training/osgusertraining/

OSG School 2025 - Scaling 6/26/2025

Community Support

• We host:
• Weekly user-focused office hours
• Monthly training
• OSG School (weeklong summer

school)
• Throughput Computing (once a

year)
• We don’t yet have a way for
researchers to connect and
share with each other…what
could that look like?

45

https://portal.osg-htc.org/documentation/support_and_training/support/getting-help-from-RCFs/

OSG School 2025 - Scaling 6/26/2025

Planning Today and Tomorrow

● Revisit your goals from Monday! How would you change
them? What would help you achieve your goals in the next
two days?
• Fully implement a single job?
• Scaffold a large submission
• Run through multiple examples?
• Ask questions of staff?

● Lots of work time this morning and afternoon
● Talk to staff!!

46

OSG School 2025 - Scaling 6/26/2025

Questions

47

OSG School 2025 - Scaling 6/26/2025

Appendix A: Practitioner
There are many people who have thought about how to gain skills and
become a practitioner.

48

OSG School 2025 - Scaling 6/26/2025

Various Ways to Think about Competency

• Great seven step summary:
https://www.dotkam.com/2007/05/07/the-seven-stages-of-exp
ertise-in-software-engineering/

• Carpentries Instructor Training Material:
https://carpentries.github.io/instructor-training/02-practice-lear
ning.html

• https://en.wikipedia.org/wiki/Four_stages_of_competence
• https://en.wikipedia.org/wiki/Dreyfus_model_of_skill_acquisitio
n

49

https://www.dotkam.com/2007/05/07/the-seven-stages-of-expertise-in-software-engineering/
https://www.dotkam.com/2007/05/07/the-seven-stages-of-expertise-in-software-engineering/
https://carpentries.github.io/instructor-training/02-practice-learning.html
https://carpentries.github.io/instructor-training/02-practice-learning.html
https://en.wikipedia.org/wiki/Four_stages_of_competence
https://en.wikipedia.org/wiki/Dreyfus_model_of_skill_acquisition
https://en.wikipedia.org/wiki/Dreyfus_model_of_skill_acquisition

OSG School 2025 - Scaling 6/26/2025

Appendix B: Scaling Up
Additional tips for each stage of the scaling up process

50

OSG School 2025 - Scaling 6/26/2025

Stage 1: Tips for Initial Test Jobs

● Test one of each kind of job you will run (e.g., prep, simulation,
analysis)

● Select smaller data sets or subsets of data for your first test jobs
● Pick test jobs that will reproduce results, if possible
● Name files carefully
● Make sure you understand and can run your software

○ Software — executable, dependencies, maybe a wrapper script to
prepare environment

○ Command-line arguments
○ Input files

51

OSG School 2025 - Scaling 6/26/2025

Stage 1: Estimating Initial Resource Needs

CPU
● By default, start with 1
● Unless you know for sure that you executable uses a certain

number > 1
Memory

● Start with the total memory available on laptop or where it ran
before

● It’s ok if this is a lot the first time, you will fine-tune later
Disk

● Estimate (as best you can) and sum sizes of: executable (+
environment), input files, output files, temporary files, standard
output/error

52

OSG School 2025 - Scaling 6/26/2025

Stage 1: Run, Refine, Repeat

After running a test job:
● Check logs and output for errors, warning, holds, etc.
● Check HTCondor job log for actual resource usage
● Fix issues, update resource needs, run 1 job again!

53

005 (1234.000.000) 2022-07-28 09:12:34 Job terminated.
 (1) Normal termination (return value 0)
[...]
 Partitionable Resources : Usage Request Allocated
 Cpus : 1 1
 Disk (KB) : 40 30 4203309
 Memory (MB) : 1 1 1

OSG School 2025 - Scaling 6/26/2025

Stage 2: Try Various Inputs

For Stage 1, the suggestion was to keep things short and simple
• For Stage 2, it is time to explore the entire range of inputs to your jobs

• Different command-line arguments; e.g., start, middle, and end of parameter
sweep

• Different input files; e.g., small, medium, and large — whatever makes sense for
you

• As you explore, you may find that per-job resource needs vary
• Set your resource requests a bit higher than maximum observed usage

• For example, if 10 test jobs used between 938 MB – 1.23 GB of memory,
update your submit file to request 1.5 GB memory

• After any changes, run the same test again and re-evaluate

54

OSG School 2025 - Scaling 6/26/2025

Stage 2: Checking Results of Multiple Jobs

Start developing methods for checking the results of multiple jobs
• Output from your executable (i.e., your research results)
• Debugging output: standard output and error files, executable logs, etc.
• HTCondor job log file (log = job.log in your submit file)
This may be one of the most overlooked aspects of scaling up!
• Checking 1 job is easy; checking 10 is tedious; checking 1000s by hand? 😭
• Techniques include:

• Sampling
• Developing tools to automate

• Sounds a bit like research, right? You know how to do that…

55

OSG School 2025 - Scaling 6/26/2025

Stage 2: Estimate Access Point Needs

Do not forget about your Access Point – it is a shared resource,
too!
• Storage space for files

• Based on a run of 10 jobs, estimate total number and size of all files for full
production

• Do you have enough storage space on the Access Point? If not, what
options exist?

• Number of running jobs
• In theory, how many jobs could you have running at once?
• Each running job uses some CPU and memory on the Access Point itself
• If submitting over 10,000 jobs consider limiting (throttling) running and idle

jobs on Access Point

56

OSG School 2025 - Scaling 6/26/2025

Stage 3: Iterate in Steps of 10–100×

By now, you have tested tens of jobs, maybe in a workflow; what next?
● Continue scaling up in increments of 10–100 times the number of jobs
● All the considerations from Stage 2 apply at each increment
● Be sure to find, understand, and hopefully fix issues before moving on

As you scale up, a challenge is to distinguish among:
● Real issues with your jobs, workflow, resource requests, etc.
● Real issues with certain subsets of your jobs
● Temporary issues with the HTC infrastructure itself
● Bugs and other longer-lasting issues with the infrastructure
● We can help! Email us with support requests if you get stuck.

57

OSG School 2025 - Scaling 6/26/2025

Appendix C: File Organization
A worked example (similar to the exercises) on how you might organize the
files in a job submission

58

OSG School 2025 - Scaling 6/26/2025

Example: Text Analysis

59

OSG School 2025 - Scaling 6/26/2025

Organizational Plan For Our Files
wordcount.sub

wordcount.py

input/
 Dracula.txt
 ...

output/
 count.Dracula.txt
 ...

log/
 job.0.log
 ...
errout/
 job.0.out
 job.0.err
 ...

60

We will assume that we want to put
our input files (books) in one folder,
and our output files (word counts) in
another folder.

OSG School 2025 - Scaling 6/26/2025

Organizational Plan For Our Files
wordcount.sub

wordcount.py

input/
 Dracula.txt
 ...

output/
 count.Dracula.txt
 ...

log/
 job.0.log
 ...
errout/
 job.0.out
 job.0.err
 ...

61

There are additional files that will be
produced by the job as well that we
should consider – the HTCondor log,
stdout and stderr. We’ll put these into
two folders.

OSG School 2025 - Scaling 6/26/2025

Coordinate HTCondor and File Structure
wordcount.sub

wordcount.py

input/
 Dracula.txt
 ...

output/
 count.Dracula.txt
 ...

log/
 job.0.log
 ...

errout/
 job.0.out
 job.0.err
 ...

62

submit file name: wordcount.submit

executable = wordcount.py

arguments = Dracula.txt

transfer_input_files = inputs/Dracula.txt

transfer_output_remaps = \

 “count.Dracula.txt = outputs/count.Dracula.txt”

log = logs/$(ProcId).log

error = errout/$(ProcId).err

output = errout/$(ProcId).out

queue 1

OSG School 2025 - Scaling 6/26/2025

HTCondor Options for Organizing Files

63

Syntax Purpose Features

Transfer_output_remaps =

“file1.out=path/to/file1.out;

file2.out=path/to/renamedFile2.out”

Used to save output
files in a specific path
and using a certain
name

- Used to save output files to a
specific folder
- Used to rename output files to
avoid writing over existing files

Initialdir =

path/to/initialDirectory

Sets the submission
directory for each job.
When set, this is
becomes the base path
where output files will
be saved.

- Used to submit multiple jobs from
different directories
- Used to avoid having to write
some paths in other submit file
values

More Information: https://htcondor.readthedocs.io/en/latest/users-manual/file-transfer.html

OSG School 2025 - Scaling 6/26/2025

Return Output to Specified Directory with
InitialDir
submission_dir/

 job.sub

 exec.py

 shared_vars.txt

 results/
input.txt

output.txt

job.err

job.log

 job.out

64

OSG School 2025 - Scaling 6/26/2025

Separate Jobs with InitialDir
submission_dir/

 job.submit

 analyze.exe

 job0/
 file.in job.log job.err
 file.out job.out
 job1/
 file.in job.log job.err
 file.out job.out
 job2/
 file.in job.log job.err
 file.out job.out

65

OSG School 2025 - Scaling 6/26/2025

Organizing Data Files

Some HTC systems will have you place small files in one directory
and larger files in a different directory.

For example, on ap40 (an OSPool Access Point), we place files less
than 1GB in /home and larger files in an OSDF origin.

Once inputs and outputs are placed in the right location, use the
appropriate HTCondor file transfer options to move the data to jobs.

66

OSG School 2025 - Scaling 6/26/2025

Appendix D: Adding
Arguments
How to use arguments in R, Python and bash
https://gist.github.com/ChristinaLK/a672cdd5dc0c0664557befb4df69d98e

67

https://gist.github.com/ChristinaLK/a672cdd5dc0c0664557befb4df69d98e

OSG School 2025 - Scaling 6/26/2025

Arguments in Python

$ python3 args.py 1 hello True

[“args.py”, “1”, “hello”, “True”]
”1”
“results1.csv”

args.py

import sys
values = sys.argv

print(values)

jobnumber = values[1]
print(jobnumber)

outfile = 'results'+ jobnumber + '.csv’
print(outfile)

68

OSG School 2025 - Scaling 6/26/2025

Arguments in R

$ Rscript args.R 1 hello True

[1] “1”, “hello”, “True”
[1] ”1”
[1] “results1.csv”

args.R

values <- commandArgs(trailingOnly=TRUE)

print(values)

jobnumber <- values[1]
print(jobnumber)

outfile <-
 paste0('results',jobnumber,'.csv')
print(outfile)

69

OSG School 2025 - Scaling 6/26/2025

Arguments in Bash (shell)

$./args.sh 1 hello True

1 hello True
1
results1.csv

args.sh

import sys
values=$@

echo values

jobnumber=$1
echo jobnumber

outfile=results${jobnumber}.csv
echo outfile

70

OSG School 2025 - Scaling 6/26/2025

Appendix E: Automation
General tools that are useful for automating things

71

OSG School 2025 - Scaling 6/26/2025

Unix Tips and Tricks

• Aliases and shell configuration:
https://carpentries-incubator.github.io/shell-extras/07-aliases/index.
html

• SSH configuration (for example:
https://chtc.cs.wisc.edu/uw-research-computing/configure-ssh)

• Super useful shell commands: cut, grep, sort, uniq, head, tail (plus
pipes: https://swcarpentry.github.io/shell-novice/04-pipefilter.html)

• Just for fun, see your most commonly used commands with:
• cat ~/.bash_history | cut -d " " -f 1 | sort | uniq -c | sort
-nr | head -n 20

• Scripting! https://swcarpentry.github.io/shell-novice/06-script.html

72

https://carpentries-incubator.github.io/shell-extras/07-aliases/index.html
https://carpentries-incubator.github.io/shell-extras/07-aliases/index.html
https://chtc.cs.wisc.edu/uw-research-computing/configure-ssh
https://swcarpentry.github.io/shell-novice/04-pipefilter.html
https://swcarpentry.github.io/shell-novice/06-script.html

OSG School 2025 - Scaling 6/26/2025

Appendix F: Job Information
How to get more information about your jobs using HTCondor job attributes
and searching through the log file

73

OSG School 2025 - Scaling 6/26/2025

Job Attributes with condor_q
HTCondor stores a list of information about each job.

This information is stored in this format:
• AttributeName = value

You can find a list of attributes for a single job by running:
• condor_q -l JobID

You can print out specific attributes by using the “format” or
“auto-format” flags with an HTCondor command:

• condor_q -af Attribute1 Attribute2
• adds job number: condor_q -af:j Attribute1 Attribute2

74

OSG School 2025 - Scaling 6/26/2025

Interesting Job Attributes
Job identifying information

• ClusterID
• ProcID
• Cmd
• Arguments
• UserLog

Where it ran
• LastRemoteHost
• MATCH_EXP_JOBGLIDEIN_Re

sourceName

Resource Request and
Usage

• RequestCpus (Memory, Disk)
• MemoryProvisioned (Disk)
• CPUsUsage (MemoryDisk)

Timing
• EnteredCurrentStatus
• QDate

75

OSG School 2025 - Scaling 6/26/2025

Interesting Job Attributes

Codes
• JobStatus
• ExitCode
• HoldReasonCode
• HoldReasonSubCode,
• NumHoldsByReason

Counts
• NumJobStarts
• NumShadowStarts
• NumSystemHolds,

76

OSG School 2025 - Scaling 6/26/2025

Checking Completed Jobs

condor_history
● Contains finalized job attributes for completed jobs

○ some have different names (HoldReason --> LastHoldReason)
● Easy to use constrain and to display values (like condor_q)
● Can be slow to search (latest first) and may drop old records quickly

HTCondor job log files (log = job.log in submit)
● Contain a lot of information
● That is both a blessing and a curse
● Somewhat easy to parse — or use HTCondor Python bindings/other

tools to help

77

OSG School 2025 - Scaling 6/26/2025

HTCondor Job Log Files

● One big, combined file, or one per job? Your preference, really
● With tens or hundreds of jobs (& more), not practical to review

manually
○ Can try to use the grep command-line tool to find specific lines
○ Use a tool to summarize log results (logs2csv)

78

OSG School 2025 - Scaling 6/26/2025

HTCondor Job Log Files: Terminations

To find when every job ended:
$ grep '^005' LOGS
(LOGS can be one file, a list of files, or a glob (using *) of files)

To find termination codes (exit codes) for every job:
$ grep termination LOGS
(will not show job IDs, though)

To get counts by termination code:
$ grep termination LOGS | sort | uniq -c

79

OSG School 2025 - Scaling 6/26/2025

HTCondor Job Log Files: Resource Lines

To get memory resource lines:
$ grep -h 'Memory (MB) *:' LOGS > memory_resources.txt

To get disk resource lines:
$ grep -h 'Disk (KB) *:' LOGS > disk_resources.txt

Import the resulting files into Excel (with some attention to import options)

For file transfers:
$ grep -h 'Total Bytes Sent By Job' LOGS
$ grep -h 'Total Bytes Received By Job' LOGS

80

OSG School 2025 - Scaling 6/26/2025

HTCondor Job Log Files: Checking on Holds

To view all job holds, their reasons, and related codes:
$ grep -h -A 2 '^012' LOGS
(Omit the -h option to see log filenames for each hit.)

Note: The OSPool may automatically release (rerun) some held jobs; if
you don’t look for them explicitly, you may never know those holds
occurred

81

OSG School 2025 - Scaling 6/26/2025

HTCSS Job Event Log to CSV Summarizer
A simple script that reads HTCondor job event logs and outputs a CSV
summary of job statistics.

82https://github.com/osg-htc/job-event-log-to-csv

[alice@ap40 logs]$ logs2csv *.log > summary.csv

https://github.com/osg-htc/job-event-log-to-csv

OSG School 2025 - Scaling 6/26/2025

Appendix G: Further Reading
Christina’s favorite references and lessons for general research computing
skills and best practices

83

OSG School 2025 - Scaling 6/26/2025

Reading
• So You Want to Be a Wizard: https://wizardzines.com/zines/wizard/

• (All of Julia’s zines are amazing!!!!!)
• Best Practices for Scientific Computing:

https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001745
• Good Enough Practices for Scientific Computing:

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005510#s
ec027

• 10 Simple Rules for Making Research Software More Robust:
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005412

• Naming Files:
http://www2.stat.duke.edu/~rcs46/lectures_2015/01-markdown-git/slides/naming
-slides/naming-slides.pdf

• (Version 2, from 2022: https://github.com/jennybc/how-to-name-files)

84

https://wizardzines.com/zines/wizard/
https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001745
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005510#sec027
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005510#sec027
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005412
http://www2.stat.duke.edu/~rcs46/lectures_2015/01-markdown-git/slides/naming-slides/naming-slides.pdf
http://www2.stat.duke.edu/~rcs46/lectures_2015/01-markdown-git/slides/naming-slides/naming-slides.pdf
https://github.com/jennybc/how-to-name-files

OSG School 2025 - Scaling 6/26/2025

Lessons and Books

• Software Carpentry/Incubator Lessons:
• Unix Shell: https://swcarpentry.github.io/shell-novice/
• Shell Extras (not super great, but some useful info):

https://carpentries-incubator.github.io/shell-extras/
• Version Control with Git: https://swcarpentry.github.io/git-novice/
• Docker Intro:

https://carpentries-incubator.github.io/docker-introduction/

• Research Software Engineering with Python
• https://third-bit.com/py-rse/

85

https://swcarpentry.github.io/shell-novice/
https://carpentries-incubator.github.io/shell-extras/
https://swcarpentry.github.io/git-novice/
https://carpentries-incubator.github.io/docker-introduction/
https://third-bit.com/py-rse/

OSG School 2025 - Scaling 6/26/2025

Acknowledgements

• This work was supported by the National Science Foundation
under Cooperative Agreement OAC-2030508 – Partnership to
Advance Throughput Computing (PATh)

86

