
Throughput Machine
Learning

Ian Ross

Data Engineer, Center for High Throughput Computing

Objectives

Provide a too-brief overview of artificial intelligence and
machine learning (AI, ML)

Throughput Machine Learning

Planting some seeds
Is my ML work “HTC-able”?

If yes, how can I go about growing it?

6/26/25 2

AI/ML – a too-brief overview

• Artificial intelligence – Methods
and software to enable machines
to observe, identify, and react to
stimuli to achieve a defined goal

• Machine learning – Algorithms
and practices to enable machines
to recognize patterns in data and
generalize to new data to achieve
tasks with or without supervision

• Subset of AI

6/26/25 3

Artificial Intelligence

Machine Learning

Large language models

Generative AI
Models trained to generate data
similar to that used to train

6/26/25 4

Deep learning
Using artificial neural networks to capture
connections and strengths (weights)
between inputs and outputs

Artificial Intelligence

Machine Learning

Large language models

Generative AI
Models trained to generate data
similar to that used to train

Deep learning
Using artificial neural networks to capture
connections and strengths (weights)
between inputs and outputs

6/26/25 5

Toy robot photo by Robo Wunderkind on Unsplash

Random forests

Decision trees

Linear
 regression

K-means
 clustering

Principal
 component
 analysis

Bayesian
 networks

Evolutionary
 algorithms

Symbolic AI

https://unsplash.com/@robowunderkind
https://unsplash.com/

Artificial Intelligence

Machine Learning

Large language models

Generative AI
Models trained to generate data
similar to that used to train

Deep learning
Using artificial neural networks to capture
connections and strengths (weights)
between inputs and outputs

6/26/25 6

Toy robot photo by Robo Wunderkind on Unsplash

Random forests

Decision trees

Linear
 regression

K-means
 clustering

Principal
 component
 analysis

Bayesian
 networks

Evolutionary
 algorithms

Symbolic AI

https://unsplash.com/@robowunderkind
https://unsplash.com/

Artificial Intelligence

Machine Learning

Large language models

Generative AI
Models trained to generate data
similar to that used to train

Deep learning
Using artificial neural networks to capture
connections and strengths (weights)
between inputs and outputs

Data science

Data engineering

6/26/25 7

Artificial Intelligence

Machine Learning

Large language models

Generative AI
Models trained to generate data
similar to that used to train

Deep learning
Using artificial neural networks to capture
connections and strengths (weights)
between inputs and outputs

Data science

Data engineering

Statistics

Bioinformatics

6/26/25 8

Artificial Intelligence

Machine Learning

Large language models

Generative AI
Models trained to generate data
similar to that used to train

Deep learning
Using artificial neural networks to capture
connections and strengths (weights)
between inputs and outputs

Data science

Data engineering

Statistics

Bioinformatics

We mostly care about these disciplines primarily
as tools and techniques that enable new SCIENCE

…but there are foundations to understand
(and complications to tackle!)

6/26/25 9

Neural networks, simplified

106/26/25

Hidden layer

OutputInput

• Historically analogous to
neurons in a brain, where
electrical signals spark
pathways to carry signals

• Artificial neurons are arranged
into layers, (input, output, or
hidden)

• The activation (value) of a
neuron depends on the values
of the previous layer and
predefined weights

Neural networks, simplified

• These weights are tuned
during training, in order to
maximize success for the
defined task

• These architectures can get
very complicated, and this is
where a lot of recent innovation
is happening

• Attention mechanisms
(transformers), RNN, (R)-CNNs,
LSTM, …

116/26/25

Hidden layer

OutputInput

Dog/cat classifier “example”

• Imagine we had thousands of pictures of our pets (and our friends’
pets and our friends’ friends’ pets and…)

• We might initialize a set of weights and then start the training
process…

6/26/25 12

Training, oversimplified

6/26/25 13

P() = 0.61

Push training data into the
model, compare the outputs
to the truth, calculate how the
predictions change as we shift
the weight parameters slightly,
move the parameters in a
promising direction, and
repeat. And repeat. And
repeat…

This is computationally
expensive, especially as
models get larger and more
complex (e.g. 30.85 million
GPU hours for Llama3.1 405B)

Dog photo by Matt Bango on Unsplash

https://unsplash.com/@mattbango
https://unsplash.com/

Now we have a model!

• Let’s deploy it and identify
some pets!

• We’ll pass in some photos from
CHTC’s #social channel (not
from the training set) and see
what our model infers from
these pictures

146/26/25
Best friends photo by Alec Favale on Unsplash

https://unsplash.com/@alecfavale
https://unsplash.com/@alecfavale
https://unsplash.com/

Inference tests

6/26/25 15

P() = 0.99

Input data (in training too!) needs to be
preprocessed (e.g. tokenized)

Inference tests

6/26/25 16

P() = 0.99

Inference tests

6/26/25 17

P() = 0.71

Limits of our model

• These weights were trained on our pets dataset. Weights (and
therefore the hidden layer) of this model captured pet
essence .

• Our model does not know how to identify anything else. A picture
of my son is outside of the training distribution and we should not
expect it to perform in this case.

• Know your data and know your objective!

• Let’s take a closer look at what this inference requires
computationally..

6/26/25 18

A bit of math…

• Nodes are a linear combination
of weighted nodes from the
previous layer:

196/26/25

Input

Hidden layer

Output

x1

x2

y1

y2

a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

a1 = W11 * x1 + W21*x2

6/26/25 20

Input

Hidden layer

Output

x1

x2

y1

y2

a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

a1 = W11 * x1 + W21*x2

a2 = W12 * x1 + W22*x2

an = W1n * xn + W2n*xn

…

…and similar for the yn

So… why GPUs?

Inference and training often boil down to parallelized matrix
multiplication, which GPUs excel at.

21

GPUs are successful because they do one thing really well:

6/26/25

Challenges in ML/AI workflows

• GPUs bring their own layer of complexity
• Dropouts, user education, administration, cost, availability

• Data and computing needs
• Size and scale aren’t unique to ML, but ML work tends to be on the heavy

side

• Training can be a long process
• Checkpointing required, especially in the OSPool

6/26/25 22

These are not new challenges! Defining resource
needs, scheduling, data movement, workflow
orchestration, learning new technologies… Sound
familiar? So let’s talk through examples to
understand whether an ML task is a good
candidate for HTC…

Throughput machine learning – Use case 1

I have 18 million scientific
articles, and I want to search
for, extract, and synthesize

visual artifacts across them!

6/26/25 23

Is this a throughput workflow?

246/26/25

What is the smallest,
self-contained

computational task that
is part of your work?
How big is the list of
these tasks? What is
needed to run one

task?

Scaling out with HTC

256/26/25

The atomic task is running our COSMOS
visual pipeline on an individual PDF. Each
PDF is on the order of 1 MB, produces 4
MB of output, and takes 5 seconds on a
GPU or 5 minutes on a CPU. The model is
~8GB, and I have a docker container ready
to go. However, these PDFs are bound by
publisher agreements and can’t leave UW
campus.

Great! This sounds ideal for
CHTC, with standard input file
transfer mechanisms. Have fun!

Throughput machine learning – Use case 2

I want to train many
models, empirically

measure their predictive
power, and use those

models to drive scientific
exploration.

6/26/25 26

Is this a throughput workflow?

276/26/25

What is the smallest,
self-contained

computational task that
is part of your work?
How big is the list of
these tasks? What is
needed to run one

task?

Scaling out with HTC

286/26/25

https://www.pnas.org/doi/full/10.1073/pnas.2104878118

The atomic task is training a single model
from our dataset, which is 10GB. We want
to test many different architectures, but
anticipate GPU runtimes on the order of
days for each model. We want to test as
many model architectures as possible. CPU,
memory, and disk requirements are
minimal.

Welcome to the
OSPool! Let’s learn
about OSDF and job
checkpointing!

I want to create a
foundation model for
bioimaging and want

to scale training across
multiple nodes!

Throughput machine learning – Use case 3

6/26/25 29

Is this a throughput workflow?

306/26/25

What is the smallest,
self-contained

computational task that
is part of your work?
How big is the list of
these tasks? What is
needed to run one

task?

Scaling out with HTC?

316/26/25

Our dataset is 2TB. The
model architecture we

want to use is too big to
fit on one GPU, and the

memory needs are on the
order of 128GB, and an
epoch of training takes

days

This isn’t a great fit for
our usual computing
philosophy, but let’s
talk more and work

together to see what
we can do!

I want to actually create our theoretical cat-dog classifier example!

I’ve talked to my RCF friends and determined it’s a good fit for

CHTC! Let’s go!

Throughput machine learning – use case 4

6/26/25 32

As I roll up my sleeves and get to work, what do I need to

consider…

…as I start to do development?

…as I think about distribute jobs in CHTC?

…as I think about improving my workflow in CHTC?

This example and walkthrough is available at https://github.com/CHTC/templates-GPUs/tree/master/ml_workflow

https://github.com/CHTC/templates-GPUs/tree/master/ml_workflow
https://github.com/CHTC/templates-GPUs/tree/master/ml_workflow
https://github.com/CHTC/templates-GPUs/tree/master/ml_workflow

Researcher-to-AI-workflow-proficiency pipeline!

Develop and test Distribute work on HTC
system

Improve workflow

✦
✦
✦

✦
✦
✦

6/26/25 33

What should you consider during development?

Develop and test

Objective

Get a minimally viable workflow running on a
local machine, while laying a foundation for
distributed work that will accomplish your
science.

6/26/25 34

Reduce computational project to a minimally viable workflow.

What should you consider during development?

Test with a subset of data.

Consider time, space, memory, and GPU needs.

Know your software and create the software environment.

6/26/25 35

The training script
class CatAndDogConvNet(nn.Module):
 def __init__(self):
 super().__init__()

 # convolutional layers (3,16,32)
 self.conv1 = nn.Conv2d(in_channels = 3, out_channels = 16,
kernel_size=(5, 5), stride=2, padding=1)
 self.conv2 = nn.Conv2d(in_channels = 16, out_channels = 32,
kernel_size=(5, 5), stride=2, padding=1)
 self.conv3 = nn.Conv2d(in_channels = 32, out_channels = 64,
kernel_size=(3, 3), padding=1)

 # connected layers
 self.fc1 = nn.Linear(in_features= 64 * 6 * 6,
out_features=500)
 self.fc2 = nn.Linear(in_features=500, out_features=50)
 self.fc3 = nn.Linear(in_features=50, out_features=2)
 def forward(self, X):
 …

class CatDogDataset(Dataset):
 def __init__(self, image_paths, transform):
 super().__init__()
 self.paths = image_paths
 self.len = len(self.paths)
 self.transform = transform
 …
 def __getitem__(self, index):
 path = self.paths[index]
 image = Image.open(path).convert('RGB')
 image = self.transform(image)
 label = 0 if 'cat' in path else 1
 return (image, label)

def main(
 data_dir: Path = typer.Option("./data", "--data-dir", "-d", \
 help="Directory containing the training data"),
 checkpoint_dir: Path = typer.Option("./checkpoints", "--checkpoint-dir", "-c", \
 help="Directory to save model checkpoints"),
 epochs: int = typer.Option(10, "--epochs", "-e", \
 help="Number of training epochs"),
):
…
 device = torch.device("cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available()
else "cpu")
…
 # create train dataset
 train_ds = CatDogDataset(train, transform)
 train_dl = DataLoader(train_ds, batch_size=500)

 # Create instance of the model and move to device
 model = CatAndDogConvNet().to(device)
 losses = []
 accuracies = []
 start = time.time()
 loss_fn = nn.CrossEntropyLoss()
 optimizer = torch.optim.Adam(model.parameters(), lr = 0.001)
..
 if not os.path.exists(model_path):
 # Model Training...
 start = time.time() # start timer for training loop

 for epoch in range(epochs):

 epoch_loss = 0
 epoch_accuracy = 0

 for X, y in train_dl:
 # Move data to device
 X, y = X.to(device), y.to(device)

 preds = model(X)
 loss = loss_fn(preds, y)

 optimizer.zero_grad()
 loss.backward()
 optimizer.step()

 accuracy = ((preds.argmax(dim=1) == y).float().mean())
 epoch_accuracy += accuracy
 epoch_loss += loss
 print('.', end='', flush=True)
 # save model
 torch.save(model.state_dict(), model_path)

Define the model architecture

Define dataset handler

Add command line arguments to
handle input/output directories

Use cuda as the backend device, if possible.
 (bonus: use MPS if running on his Macbook!)

Define dataset, loader, initialize model, and move to
the specified device

Train the model and save it after all epochs!

6/26/25 36

Defining the environment and container image
Start from a standard CUDA image

FROM nvidia/cuda:12.4.1-runtime-ubuntu22.04

Update software repositories and install dependencies

RUN apt-get update

RUN apt-get install software-properties-common -y

RUN add-apt-repository ppa:deadsnakes/ppa -y

ARG DEBIAN_FRONTEND="noninteractive"

ENV TZ=America/Chicago

RUN apt-get update

Install python and pip

RUN apt-get install -y \

python3.12 python3.12-dev python3.12-venv zip \

&& update-alternatives --install /usr/bin/python python

/usr/bin/python3.12 1 \

&& python -m ensurepip --upgrade \

 && rm -rf /var/lib/apt/lists/*

Set working directory

WORKDIR /app

Copy only the requirements file first and install dependencies

COPY requirements.txt .

RUN pip3.12 install -r requirements.txt

• We want to use GPUs and this is a
generally compatible CUDA image
to start from

• We want to install python3.12 and
make sure that pip is available

• Install our python dependencies

D
o

ck
er

fi
le

pandas

typer

torch

matplotlib

torchvision

re
q

u
ir

e
m

e
n

ts
.t

xt
6/26/25 37

Some development time passes…

• My code and my environment are ready!

• I’ve gotten deeper understanding into
• My data

• I’ve split it into training and validation sets, defined preprocessing, and staged It
appropriately

• My resource needs
• Or I’ve run enough tests for a useful estimate

• And I’ve done some reps training locally
• At least enough to know that the code works

386/26/25

Researcher-to-AI-workflow-proficiency pipeline!

Develop and test Distribute work on HTC
system

Improve workflow

✦
✦
✦

✦
✦
✦

6/26/25 39

Distribute work on HTC
system

What should you consider during deployment?

Objective

Effectively utilize the available resources to
train the model (or many variants of the
model).

6/26/25 40

GPUs in the OSPool

The OSPool makes a variety of GPUs available to you (just don't ask how many!)

Some GPUs you might land on:

• GeForce GTX 1080 Ti (Capability: 6.1)

• V100 (Capability: 7.0)

• GeForce GTX 2080 Ti (Capability: 7.5)

• Quadro RTX 6000 (Capability: 7.5)

• A100 (Capability: 8.0)

• A40 (Capability: 8.6)

• GeForce RTX 3090 (Capability: 8.6)

GPUs in the GeForce series are "gaming" GPUs, but don't mistake this to mean they're incapable!

Compute Capability defines specific

hardware features on the GPU.

It doesn't tell you about available

memory.

6/26/25 41

Submit file options
• Request GPUs with “request_gpus” and require minimum

memory and CUDA capability:

request_cpus = 1
request_memory = 4 GB
request_disk = 8 GB
request_gpus = 1

gpus_minimum_capability = 8.0

gpus_minimum_memory = 4000

https://portal.osg-htc.org/documentation/htc_workloads/specific_resource/gpu-jobs/

6/26/25 42

https://portal.osg-htc.org/documentation/htc_workloads/specific_resource/gpu-jobs/
https://portal.osg-htc.org/documentation/htc_workloads/specific_resource/gpu-jobs/
https://portal.osg-htc.org/documentation/htc_workloads/specific_resource/gpu-jobs/
https://portal.osg-htc.org/documentation/htc_workloads/specific_resource/gpu-jobs/
https://portal.osg-htc.org/documentation/htc_workloads/specific_resource/gpu-jobs/

The submit file

container_image = osdf:///ospool/ap40/data/iaross/catdog.sif
see our guide on converting docker images to apptainer

request_disk = 500MB
request_memory = 6GB
request_cpus = 1

See our CHTC guide on GPU usage / OSPool guide
request_gpus = 1
gpus_minimum_capability = 7.5
gpus_minimum_memory = 4096

executable = train.sh

transfer_input_files = train.py,
 osdf:///ospool/ap40/data/iaross/cat_dog/train.zip
transfer_output_files = output

output = $(CLUSTERID).out
error = $(CLUSTERID).err
log = catdog_training.log

queue

#!/bin/bash

wd=$(pwd)
mkdir data
mkdir $wd/output

unzip train.zip -d data/
rm train.zip

cd /app/

python train.py \
 --data-dir $wd/data/ \
 --checkpoint-dir $wd/output/

train.sub train.sh

6/26/25 43

https://chtc.cs.wisc.edu/uw-research-computing/htc-docker-to-apptainer
our%20guide%20on%20GPU%20usage
https://portal.osg-htc.org/documentation/htc_workloads/specific_resource/gpu-jobs/
https://portal.osg-htc.org/documentation/htc_workloads/specific_resource/gpu-jobs/

GPUs in CHTC CHTC

There are ~300 GPUs in CHTC, ranging

from GTX 1080Ti to H200

Opt into shared GPUs

• +WantGPULab = true

• +GPUJobLength = "short"

(or "medium" or "long")

Backfill researcher-owned GPUs

• Approximately half are owned by specific

groups, but you can opt into backfilling

them

• +IsResumable = true

GPUJobLength Maximum
runtime

Per-user
limitation

Short 12 hours 2/3 of GPUs

Medium 24 hours 1/3 of GPUs

Long 7 days 4 GPUs

Maximize your workload capacity with shorter jobs!

6/26/25 44

Researcher-to-AI-workflow-proficiency pipeline!

Develop and test Distribute work on HTC
system

Improve workflow

✦
✦
✦

✦
✦
✦

6/26/25 45

Improve workflow

✦
✦
✦

✦
✦
✦

How can you improve your workflow?

Objective

Get even more out of the available resources
(“do more with less”), monitor and organize
runs, and/or create ensembles of models.

6/26/25 46

How can you improve your workflow?

• Automated workflows (e.g. using

DAGMan)

• Hyperparameter and ensembles – Don’t

think of training one model, think of

training many and finding (or combining)

the best

• Weights and Biases (or similar tools) to

monitor training runs

• Works as expected, but be aware of

API key leakage

Pre-
processing

TrainingTraining Training

Post-
processing

6/26/25 47

https://chtc.cs.wisc.edu/uw-research-computing/htc/dagman-simple-example

Checkpointing
• Update the logic of the training

script to enable loading+resuming
from a checkpoint.

• The job doesn’t need to run to full
completion within one job cycle.
This means:

• Resilience against job eviction and
machine issues

• Ability to request “short” jobs (more
slots available!)

6/26/25 48

Where to go from here?

• Think about your workflow!

• A world of education opportunities
• Pytorch, HuggingFace, <your software of choice> documentation

• YouTube for explanations and theory

• Blogs for examples and inspiration

• arXiv for preprints

• Explore available pre-made images: Docker Hub, NGC catalog

• OSPool documentation

• CHTC documentation

496/26/25

https://catalog.ngc.nvidia.com/?filters=&orderBy=weightPopularDESC&query=&page=&pageSize=
https://portal.osg-htc.org/documentation/htc_workloads/specific_resource/gpu-jobs/
https://portal.osg-htc.org/documentation/htc_workloads/specific_resource/gpu-jobs/
https://chtc.cs.wisc.edu/uw-research-computing/gpu-jobs
https://chtc.cs.wisc.edu/uw-research-computing/gpu-jobs

Questions?

• Talk to us! Don’t let computing be a barrier to your research!

6/26/25 50

	Slide 1: Throughput Machine Learning
	Slide 2: Objectives
	Slide 3: AI/ML – a too-brief overview
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10: Neural networks, simplified
	Slide 11: Neural networks, simplified
	Slide 12: Dog/cat classifier “example”
	Slide 13: Training, oversimplified
	Slide 14: Now we have a model!
	Slide 15: Inference tests
	Slide 16: Inference tests
	Slide 17: Inference tests
	Slide 18: Limits of our model
	Slide 19: A bit of math…
	Slide 20
	Slide 21: So… why GPUs?
	Slide 22: Challenges in ML/AI workflows
	Slide 23: Throughput machine learning – Use case 1
	Slide 24: Is this a throughput workflow?
	Slide 25: Scaling out with HTC
	Slide 26: Throughput machine learning – Use case 2
	Slide 27: Is this a throughput workflow?
	Slide 28: Scaling out with HTC
	Slide 29: Throughput machine learning – Use case 3
	Slide 30: Is this a throughput workflow?
	Slide 31: Scaling out with HTC?
	Slide 32: Throughput machine learning – use case 4
	Slide 33: Researcher-to-AI-workflow-proficiency pipeline!
	Slide 34: What should you consider during development?
	Slide 35: What should you consider during development?
	Slide 36: The training script
	Slide 37: Defining the environment and container image
	Slide 38: Some development time passes…
	Slide 39: Researcher-to-AI-workflow-proficiency pipeline!
	Slide 40: What should you consider during deployment?
	Slide 41: GPUs in the OSPool
	Slide 42: Submit file options
	Slide 43: The submit file
	Slide 44: GPUs in CHTC CHTC
	Slide 45: Researcher-to-AI-workflow-proficiency pipeline!
	Slide 46: How can you improve your workflow?
	Slide 47: How can you improve your workflow?
	Slide 48: Checkpointing
	Slide 49: Where to go from here?
	Slide 50: Questions?

