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Objectives

Provide a too-brief overview of artificial intelligence and 
machine learning (AI, ML)

Throughput Machine Learning

Planting some seeds
Is my ML work “HTC-able”?

If yes, how can I go about growing it?
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AI/ML – a too-brief overview

• Artificial intelligence – Methods 
and software to enable machines 
to observe, identify, and react to 
stimuli to achieve a defined goal

• Machine learning – Algorithms 
and practices to enable machines 
to recognize patterns in data and 
generalize to new data to achieve 
tasks with or without supervision

• Subset of AI
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Artificial Intelligence

Machine Learning

Large language models

Generative AI
Models trained to generate data
similar to that used to train
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Deep learning
Using artificial neural networks to capture 
connections and strengths (weights)
between inputs and outputs
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Artificial Intelligence

Machine Learning

Large language models

Generative AI
Models trained to generate data
similar to that used to train

Deep learning
Using artificial neural networks to capture 
connections and strengths (weights)
between inputs and outputs

Data science

Data engineering

Statistics

Bioinformatics

We mostly care about these disciplines primarily
as tools and techniques that enable new SCIENCE

…but there are foundations to understand 
(and complications to tackle!)

6/26/25 9



Neural networks, simplified
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Hidden layer

OutputInput

• Historically analogous to 
neurons in a brain, where 
electrical signals spark 
pathways to carry signals

• Artificial neurons are arranged 
into layers, (input, output, or 
hidden)

• The activation (value) of a 
neuron depends on the values 
of the previous layer and 
predefined weights



Neural networks, simplified

• These weights are tuned 
during training, in order to 
maximize success for the 
defined task

• These architectures can get 
very complicated, and this is 
where a lot of recent innovation 
is happening

• Attention mechanisms 
(transformers), RNN, (R)-CNNs, 
LSTM, …
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Hidden layer

OutputInput



Dog/cat classifier “example”

• Imagine we had thousands of pictures of our pets (and our friends’ 
pets and our friends’ friends’ pets and…)

• We might initialize a set of weights and then start the training 
process…
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Training, oversimplified
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P( ) = 0.61

Push training data into the 
model, compare the outputs 
to the truth, calculate how the 
predictions change as we shift 
the weight parameters slightly, 
move the parameters in a 
promising direction, and 
repeat. And repeat. And 
repeat…

This is computationally 
expensive, especially as 
models get larger and more 
complex (e.g. 30.85 million 
GPU hours for Llama3.1 405B)

Dog photo by Matt Bango on Unsplash

https://unsplash.com/@mattbango
https://unsplash.com/


Now we have a model!

• Let’s deploy it and identify 
some pets!

• We’ll pass in some photos from 
CHTC’s #social channel (not 
from the training set) and see 
what our model infers from 
these pictures

146/26/25
Best friends photo by Alec Favale on Unsplash

https://unsplash.com/@alecfavale
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Inference tests
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P( ) = 0.99

Input data (in training too!) needs to be
preprocessed (e.g. tokenized) 



Inference tests
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P( ) = 0.99



Inference tests
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P( ) = 0.71



Limits of our model

• These weights were trained on our pets dataset. Weights (and 
therefore the hidden layer) of this model captured pet 
essence . 

• Our model does not know how to identify anything else. A picture 
of my son is outside of the training distribution and we should not 
expect it to perform in this case.

• Know your data and know your objective!

• Let’s take a closer look at what this inference requires 
computationally..
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A bit of math…

• Nodes are a linear combination 
of weighted nodes from the 
previous layer:
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a2 = W12 * x1 + W22*x2

an = W1n * xn + W2n*xn

…

…and similar for the yn



So… why GPUs?

Inference and training often boil down to parallelized matrix 
multiplication, which GPUs excel at.

21

GPUs are successful because they do one thing really well:
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Challenges in ML/AI workflows

• GPUs bring their own layer of complexity
• Dropouts, user education, administration, cost, availability

• Data and computing needs
• Size and scale aren’t unique to ML, but ML work tends to be on the heavy 

side

• Training can be a long process
• Checkpointing required, especially in the OSPool

6/26/25 22

These are not new challenges! Defining resource 
needs, scheduling, data movement, workflow 
orchestration, learning new technologies… Sound 
familiar? So let’s talk through examples to 
understand whether an ML task is a good 
candidate for HTC…



Throughput machine learning – Use case 1

I have 18 million scientific 
articles, and I want to search 
for, extract, and synthesize 

visual artifacts across them!
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Is this a throughput workflow?

246/26/25

What is the smallest, 
self-contained 

computational task that 
is part of your work? 
How big is the list of 
these tasks? What is 
needed to run one 

task?



Scaling out with HTC

256/26/25

The atomic task is running our COSMOS 
visual pipeline on an individual PDF. Each 
PDF is on the order of 1 MB, produces 4 
MB of output, and takes 5 seconds on a 
GPU or 5 minutes on a CPU. The model is 
~8GB, and I have a docker container ready 
to go. However, these PDFs are bound by 
publisher agreements and can’t leave UW 
campus.

Great! This sounds ideal for 
CHTC, with standard input file 
transfer mechanisms. Have fun!



Throughput machine learning – Use case 2

I want to train many 
models, empirically 

measure their predictive 
power, and use those 

models to drive scientific 
exploration. 
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Is this a throughput workflow?

276/26/25

What is the smallest, 
self-contained 

computational task that 
is part of your work? 
How big is the list of 
these tasks? What is 
needed to run one 

task?



Scaling out with HTC
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https://www.pnas.org/doi/full/10.1073/pnas.2104878118

The atomic task is training a single model 
from our dataset, which is 10GB. We want 
to test many different architectures, but 
anticipate GPU runtimes on the order of 
days for each model. We want to test as 
many model architectures as possible. CPU, 
memory, and disk requirements are 
minimal.

Welcome to the 
OSPool! Let’s learn 
about OSDF and job 
checkpointing!



I want to create a 
foundation model for 
bioimaging and want 

to scale training across 
multiple nodes!

Throughput machine learning – Use case 3
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Is this a throughput workflow?
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What is the smallest, 
self-contained 

computational task that 
is part of your work? 
How big is the list of 
these tasks? What is 
needed to run one 

task?



Scaling out with HTC?

316/26/25

Our dataset is 2TB. The 
model architecture we 

want to use is too big to 
fit on one GPU, and the 

memory needs are on the 
order of 128GB, and an 
epoch of training takes 

days 

This isn’t a great fit for 
our usual computing 
philosophy, but let’s 
talk more and work 

together to see what 
we can do!



I want to actually create our theoretical cat-dog classifier example! 

I’ve talked to my RCF friends and determined it’s a good fit for 

CHTC! Let’s go!

Throughput machine learning – use case 4
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As I roll up my sleeves and get to work, what do I need to 

consider…

…as I start to do development?

…as I think about distribute jobs in CHTC?

…as I think about improving my workflow in CHTC?

This example and walkthrough is available at https://github.com/CHTC/templates-GPUs/tree/master/ml_workflow

https://github.com/CHTC/templates-GPUs/tree/master/ml_workflow
https://github.com/CHTC/templates-GPUs/tree/master/ml_workflow
https://github.com/CHTC/templates-GPUs/tree/master/ml_workflow


Researcher-to-AI-workflow-proficiency pipeline!

Develop and test Distribute work on HTC 
system

Improve workflow

✦
✦
✦

✦
✦
✦
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What should you consider during development?

Develop and test

Objective

Get a minimally viable workflow running on a 
local machine, while laying a foundation for 
distributed work that will accomplish your 
science.
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Reduce computational project to a minimally viable workflow.

What should you consider during development?

Test with a subset of data.

Consider time, space, memory, and GPU needs.

Know your software and create the software environment.
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The training script
class CatAndDogConvNet(nn.Module):
    def __init__(self):
        super().__init__()

        # convolutional layers (3,16,32)
        self.conv1 = nn.Conv2d(in_channels = 3, out_channels = 16, 
kernel_size=(5, 5), stride=2, padding=1)
        self.conv2 = nn.Conv2d(in_channels = 16, out_channels = 32, 
kernel_size=(5, 5), stride=2, padding=1)
        self.conv3 = nn.Conv2d(in_channels = 32, out_channels = 64, 
kernel_size=(3, 3), padding=1)

        # connected layers
        self.fc1 = nn.Linear(in_features= 64 * 6 * 6, 
out_features=500)
        self.fc2 = nn.Linear(in_features=500, out_features=50)
        self.fc3 = nn.Linear(in_features=50, out_features=2)
    def forward(self, X):
        …

class CatDogDataset(Dataset):
    def __init__(self, image_paths, transform):
        super().__init__()
        self.paths = image_paths
        self.len = len(self.paths)
        self.transform = transform
    …
    def __getitem__(self, index): 
        path = self.paths[index]
        image = Image.open(path).convert('RGB')
        image = self.transform(image)
        label = 0 if 'cat' in path else 1
        return (image, label)

def main(
    data_dir: Path = typer.Option("./data", "--data-dir", "-d", \ 
 help="Directory containing the training data"),
    checkpoint_dir: Path = typer.Option("./checkpoints", "--checkpoint-dir", "-c", \
 help="Directory to save model checkpoints"),
    epochs: int = typer.Option(10, "--epochs", "-e", \
 help="Number of training epochs"),
):
…
    device = torch.device("cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() 
else "cpu")
…
    # create train dataset
    train_ds = CatDogDataset(train, transform)
    train_dl = DataLoader(train_ds, batch_size=500)

    # Create instance of the model and move to device
    model = CatAndDogConvNet().to(device)
    losses = []
    accuracies = []
    start = time.time()
    loss_fn = nn.CrossEntropyLoss()
    optimizer = torch.optim.Adam(model.parameters(), lr = 0.001)
..
    if not os.path.exists(model_path):
        # Model Training...
        start = time.time()  # start timer for training loop

        for epoch in range(epochs):

            epoch_loss = 0
            epoch_accuracy = 0

            for X, y in train_dl:
                # Move data to device
                X, y = X.to(device), y.to(device)
                
                preds = model(X)
                loss = loss_fn(preds, y)

                optimizer.zero_grad()
                loss.backward()
                optimizer.step()

                accuracy = ((preds.argmax(dim=1) == y).float().mean())
                epoch_accuracy += accuracy
                epoch_loss += loss
                print('.', end='', flush=True)
         # save model
         torch.save(model.state_dict(), model_path)

Define the model architecture

Define dataset handler

Add command line arguments to 
handle input/output directories

Use cuda as the backend device, if possible.
 (  bonus: use MPS if running on his Macbook! )

Define dataset, loader, initialize model, and move to
the specified device

Train the model and save it after all epochs!
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Defining the environment and container image
# Start from a standard CUDA image

FROM nvidia/cuda:12.4.1-runtime-ubuntu22.04

# Update software repositories and install dependencies

RUN apt-get update

RUN apt-get install software-properties-common -y

RUN add-apt-repository ppa:deadsnakes/ppa -y

ARG DEBIAN_FRONTEND="noninteractive"

ENV TZ=America/Chicago

RUN apt-get update

# Install python and pip

RUN apt-get install -y \

python3.12 python3.12-dev python3.12-venv zip \

&& update-alternatives --install /usr/bin/python python 

/usr/bin/python3.12 1 \

&& python -m ensurepip --upgrade \

    && rm -rf /var/lib/apt/lists/*

# Set working directory

WORKDIR /app

# Copy only the requirements file first and install dependencies

COPY requirements.txt .

RUN pip3.12 install -r requirements.txt

• We want to use GPUs and this is a 
generally compatible CUDA image 
to start from

• We want to install python3.12 and 
make sure that pip is available

• Install our python dependencies

D
o

ck
er

fi
le

pandas

typer

torch

matplotlib

torchvision

re
q

u
ir

e
m

e
n

ts
.t

xt
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Some development time passes…

• My code and my environment are ready!

• I’ve gotten deeper understanding into 
• My data

• I’ve split it into training and validation sets, defined preprocessing, and staged It 
appropriately

• My resource needs 
• Or I’ve run enough tests for a useful estimate

• And I’ve done some reps training locally 
• At least enough to know that the code works
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Researcher-to-AI-workflow-proficiency pipeline!

Develop and test Distribute work on HTC 
system

Improve workflow

✦
✦
✦

✦
✦
✦
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Distribute work on HTC 
system

What should you consider during deployment?

Objective

Effectively utilize the available resources to 
train the model (or many variants of the 
model).
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GPUs in the OSPool

The OSPool makes a variety of GPUs available to you (just don't ask how many!)

Some GPUs you might land on:

• GeForce GTX 1080 Ti (Capability: 6.1)

• V100 (Capability: 7.0)

• GeForce GTX 2080 Ti (Capability: 7.5)

• Quadro RTX 6000 (Capability: 7.5)

• A100 (Capability: 8.0)

• A40 (Capability: 8.6)

• GeForce RTX 3090 (Capability: 8.6)

GPUs in the GeForce series are "gaming" GPUs, but don't mistake this to mean they're incapable!

Compute Capability defines specific 

hardware features on the GPU.

It doesn't tell you about available 

memory.
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Submit file options
• Request GPUs with “request_gpus” and require minimum 

memory and CUDA capability:

request_cpus = 1
request_memory = 4 GB
request_disk = 8 GB
request_gpus = 1

gpus_minimum_capability = 8.0

gpus_minimum_memory = 4000

https://portal.osg-htc.org/documentation/htc_workloads/specific_resource/gpu-jobs/ 
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The submit file

container_image = osdf:///ospool/ap40/data/iaross/catdog.sif
# see our guide on converting docker images to apptainer

request_disk = 500MB
request_memory = 6GB
request_cpus = 1

# See our CHTC guide on GPU usage / OSPool guide
request_gpus = 1
gpus_minimum_capability = 7.5
gpus_minimum_memory = 4096

executable = train.sh

transfer_input_files = train.py,
 osdf:///ospool/ap40/data/iaross/cat_dog/train.zip
transfer_output_files = output

output = $(CLUSTERID).out
error = $(CLUSTERID).err
log = catdog_training.log

queue

#!/bin/bash

wd=$(pwd)
mkdir data
mkdir $wd/output

unzip train.zip -d data/
rm train.zip

cd /app/

python train.py \
  --data-dir $wd/data/ \ 
  --checkpoint-dir $wd/output/

train.sub train.sh
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GPUs in CHTC CHTC

There are ~300 GPUs in CHTC, ranging 

from GTX 1080Ti to H200

Opt into shared GPUs

• +WantGPULab = true

• +GPUJobLength = "short"

(or "medium" or "long")

Backfill researcher-owned GPUs

• Approximately half are owned by specific 

groups, but you can opt into backfilling 

them

• +IsResumable = true

GPUJobLength Maximum 
runtime

Per-user 
limitation

Short 12 hours 2/3 of GPUs

Medium 24 hours 1/3 of GPUs

Long 7 days 4 GPUs

Maximize your workload capacity with shorter jobs!
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Researcher-to-AI-workflow-proficiency pipeline!

Develop and test Distribute work on HTC 
system

Improve workflow

✦
✦
✦

✦
✦
✦
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Improve workflow

✦
✦
✦

✦
✦
✦

How can you improve your workflow?

Objective

Get even more out of the available resources 
(“do more with less”), monitor and organize 
runs, and/or create ensembles of models.

6/26/25 46



How can you improve your workflow?

• Automated workflows (e.g. using 

DAGMan)

• Hyperparameter and ensembles – Don’t 

think of training one model, think of 

training many and finding (or combining) 

the best

• Weights and Biases (or similar tools) to 

monitor training runs

• Works as expected, but be aware of 

API key leakage

Pre-
processing

TrainingTraining Training

Post-
processing
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Checkpointing
• Update the logic of the training 

script to enable loading+resuming 
from a checkpoint.

• The job doesn’t need to run to full 
completion within one job cycle. 
This means:

• Resilience against job eviction and 
machine issues

• Ability to request “short” jobs (more 
slots available!)
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Where to go from here?

• Think about your workflow!

• A world of education opportunities
• Pytorch, HuggingFace, <your software of choice> documentation

• YouTube for explanations and theory

• Blogs for examples and inspiration

• arXiv for preprints

• Explore available pre-made images: Docker Hub, NGC catalog

• OSPool documentation

• CHTC documentation

496/26/25

https://catalog.ngc.nvidia.com/?filters=&orderBy=weightPopularDESC&query=&page=&pageSize=
https://portal.osg-htc.org/documentation/htc_workloads/specific_resource/gpu-jobs/
https://portal.osg-htc.org/documentation/htc_workloads/specific_resource/gpu-jobs/
https://chtc.cs.wisc.edu/uw-research-computing/gpu-jobs
https://chtc.cs.wisc.edu/uw-research-computing/gpu-jobs


Questions?

• Talk to us! Don’t let computing be a barrier to your research!
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