
Introduction to Job Submission

with HTCondor

June 23, 2024

Amber Lim

Slides adapted from Lauren Michaels, Rachel Lombardi, Andrew Owen

This work was supported by NSF grants MPS-1148698, OAC-1836650, and OAC-2030508

OSG User School 2025

Objective

By the end of this session, you should be able to:

• Describe how the HTCondor manages workflows

• Translate your computational tasks to “jobs”

• Run, monitor, and review your jobs

• Submit multiple jobs using multiple methods

• Test, tune, and troubleshoot your workflow

2

OSG User School 2025

History of HTCondor

4

OSG User School 2025

HTCondor History and Status

• Beginnings

− Started in 1988 as a “cycle scavenger”

• Today

− Developed at CHTC by professional developers

− Used all over the world, by:

▪ Campuses, national labs, Einstein/Folding@Home

▪ Dreamworks, Boeing, SpaceX, investment firms, …

▪ The OSPool!!

• Miron Livny

− Professor, UW-Madison Computer Sciences

− CHTC Director, OSG Technical Director

5

OSG User School 2025

How does HTCondor work?

6

OSG User School 2025

HTCondor — How It Works

2. You submit tasks to

HTCondor on an

Access Point.

Access Point
Execution

Point

Execution

Point

7

3. HTCondor schedules

your tasks to run on

Execution Points

tasks

Execution

Point

1. You create and

describe your tasks

on the Access Point.

OSG User School 2025

HTCondor — How It Works

2. You submit tasks to

HTCondor on an

Access Point.

Access Point

8

3. HTCondor schedules

your tasks to run on

Execution Points

1. You create and

describe your tasks

on the Access Point.

Your computer

OSG User School 2025

Terminology: Job

Job: An independently-scheduled unit of computing work

Three main pieces:

Executable: the script or program to run

Input: any options (arguments) and/or file-based information

Output: files printed by the executable

Note: In order to run many jobs, executable must run on

the command-line without any graphical input from the user

9

OSG User School 2025

Terminology: Machine, Slot

Machine
− A whole computer (desktop or server)

− Has multiple processors (CPU cores), some amount of memory,

and some amount of file space (disk)

Slot

− an assignable unit of a machine (i.e. 1 job per slot)

− may correspond to one core with some memory and disk

− a typical machine will have multiple slots

HTCondor can break up and create new slots, dynamically, as

resources become available from completed jobs

10

OSG User School 2025

Job Matching

On a regular basis, the central manager reviews
Job and Machine attributes and matches jobs to Slots.

access point

execute

point

execute

point

execute

point

central manager

1111

OSG User School 2025

Job Execution

Then the Access and Execution points

communicate directly.

access point

execute

point

execute

point

execute

point

central manager

1212

OSG User School 2025

Basics of submitting jobs

13

OSG User School 2025

HTCondor — How It Works

2. You submit tasks to

HTCondor on an

Access Point.

Access Point
Execution

Point

Execution

Point

14

3. HTCondor schedules

your tasks to run on

Execution Points

tasks

Execution

Point

1. You create and

describe your tasks

on the Access Point.

OSG User School 2025

Terminology: Job

Job: An independently scheduled unit of computing work

Three main pieces:

Executable: the script or program to run

Input: any options (arguments) and/or file-based information

Output: files printed by the executable

Note: In order to run many jobs, executable must run on

the command-line without any graphical input from the user

15

OSG User School 2025

Components of a job

Software environment
What software, packages, and libraries do you need?

16

Requirements

What resources (CPU, GPU, memory, disk) do you need?

Executable + arguments

How do you run your computation?

Input files/output files

What input files are needed? What output files are created?

Standard output/error

Where do you save messages printed to the screen?

OSG User School 2025

Components of a job

Software environment
What software, packages, and libraries do you need?

17

Requirements

What resources (CPU, GPU, memory, disk) do you need?

Executable + arguments

How do you run your computation?

Input files/output files

What input files are needed? What output files are created?

Standard output/error

Where do you save messages printed to the screen?

We will cover Software

on Tuesday!

OSG User School 2025

Job Example

Imagine you are a

researcher who needs to

compare each state’s

data to national data.

• One comparison takes

a few hours.

• Each comparison is

independent.

18

us.dat

wi.dat

il.dat

mi.dat

mn.dat

+

OSG User School 2025

Command for One Task

Your program called “compare_states” (executable), which

compares two data files (input) and produces a single output

file.

19

wi.dat

compare_

states

us.dat

wi.dat.out

$ compare_states wi.dat us.dat wi.dat.out

OSG User School 2025

executable = compare_states

arguments = wi.dat us.dat wi.dat.out

transfer_input_files = us.dat, wi.dat

log = job.log

output = job.out

error = job.err

request_cpus = 1

request_disk = 20MB

request_memory = 20MB

queue 1

HTCondor Submit File

20

OSG User School 2025

executable = compare_states

arguments = wi.dat us.dat wi.dat.out

transfer_input_files = us.dat, wi.dat

log = job.log

output = job.out

error = job.err

request_cpus = 1

request_disk = 20MB

request_memory = 20MB

queue 1

HTCondor Submit File

List your executable and

any arguments it takes

$ compare_states wi.dat us.dat wi.dat.out

21

Arguments are any options

passed to the executable from

the command line

OSG User School 2025

executable = compare_states

arguments = wi.dat us.dat wi.dat.out

transfer_input_files = us.dat, wi.dat

log = job.log

output = job.out

error = job.err

request_cpus = 1

request_disk = 20MB

request_memory = 20MB

queue 1

HTCondor Submit File

Provide HTCondor a comma-

separated list of input files

to transfer to the slot

wi.dat

us.dat

22

The Access Point and the Execution

Point are separate machines, so we

must specify which files to transfer.

OSG User School 2025

HTCondor Submit File

HTCondor will transfer

back all new and changed

files (output) from the job,

automatically.

executable = compare_states

arguments = wi.dat us.dat wi.dat.out

transfer_input_files = us.dat, wi.dat

log = job.log

output = job.out

error = job.err

request_cpus = 1

request_disk = 20MB

request_memory = 20MB

queue 1

wi.dat.out

23

OSG User School 2025

HTCondor Submit File

log: file created by HTCondor

to track job progress

− Explored in exercises!

output/error: captures

stdout and stderr from your

program (what would otherwise

be printed to the terminal)

executable = compare_states

arguments = wi.dat us.dat wi.dat.out

transfer_input_files = us.dat, wi.dat

log = job.log

output = job.out

error = job.err

request_cpus = 1

request_disk = 20MB

request_memory = 20MB

queue 1

24

OSG User School 2025

HTCondor Submit File

request_cpus,

request_disk,

request_memory:

the resources your job
needs.

executable = compare_states

arguments = wi.dat us.dat wi.dat.out

transfer_input_files = us.dat, wi.dat

log = job.log

output = job.out

error = job.err

request_cpus = 1

request_disk = 20MB

request_memory = 20MB

queue 1

25

OSG User School 2025

HTCondor Submit File

Very important to request

appropriate resources

(memory, cpus, disk)

− requesting too little:

causes problems for your

jobs; jobs might by ‘held’ by

HTCondor

− requesting too much: jobs

will match to fewer “slots”

than they could, and you’ll

block other jobs

executable = compare_states

arguments = wi.dat us.dat wi.dat.out

transfer_input_files = us.dat, wi.dat

log = job.log

output = job.out

error = job.err

request_cpus = 1

request_disk = 20MB

request_memory = 20MB

queue 1

26

OSG User School 2025

HTCondor Submit File

queue: keyword indicating

the number of jobs to

queue

 - must be the last line of the

submit file

 - has different syntax options

we will learn later!

executable = compare_states

arguments = wi.dat us.dat wi.dat.out

transfer_input_files = us.dat, wi.dat

log = job.log

output = job.out

error = job.err

request_cpus = 1

request_disk = 20MB

request_memory = 20MB

queue 1

27

OSG User School 2025

executable = compare_states

arguments = wi.dat us.dat wi.dat.out

transfer_input_files = us.dat, wi.dat

log = job.log

output = job.out

error = job.err

request_cpus = 1

request_disk = 20MB

request_memory = 20MB

queue 1

Let’s pause!

28

What questions do you have

about—

• How HTCondor works?

• Components of a job?

• The HTCondor submit file?

OSG User School 2025

Submitting and monitoring

HTCondor jobs

29

OSG User School 2025

HTCondor — How It Works

2. You submit tasks to

HTCondor on an

Access Point.

Access Point
Execution

Point

Execution

Point

30

3. HTCondor schedules

your tasks to run on

Execution Points

tasks

Execution

Point

1. You create and

describe your tasks

on the Access Point.

OSG User School 2025

Submitting and Monitoring
• Submit jobs on the Access Point

• To submit jobs: condor_submit submit_file

• To monitor submitted jobs: condor_q

$ condor_submit job.submit

Submitting job(s).

1 job(s) submitted to cluster 128.

$ condor_q

-- Schedd: ap40.uw.osg-htc.org : <128.105.68.62:9618> @ 08/01/24 10:35:54

OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS

alice ID:128 8/1 10:05 _ _ 1 1 128.0

1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended

HTCondor Manual: condor_submit

HTCondor Manual: condor_q 31

http://research.cs.wisc.edu/htcondor/manual/v8.5/condor_submit.html
http://research.cs.wisc.edu/htcondor/manual/v8.5/condor_q.html

OSG User School 2025

More about condor_q

• By default, condor_q …

− Only shows your jobs and not anyone else’s

− Groups jobs that were submitted together (“batch” or “cluster”)

− Only shows active batches

• Limit condor_q by username, ClusterId or full JobId, (denoted

[U/C/J] in following slides).

$ condor_q

-- Schedd: ap40.uw.osg-htc.org : <128.105.68.62:9618> @ 08/01/24 10:35:54

OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS

alice CMD: compare_states 8/1 10:09 3 4 3 10 129.0-9

10 jobs; 3 completed, 0 removed, 3 idle, 4 running, 0 held, 0 suspended

JobId = ClusterID.ProcID

32

OSG User School 2025

More about condor_q

• To see individual job details, use:

 condor_q –nobatch

• We will use the -nobatch option in the following slides

to see extra detail about what is happening with a job

$ condor_q -nobatch

-- Schedd: ap40.uw.osg-htc.org : <128.105.68.62:9618>

 ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

129.0 alice 8/1 10:09 0+00:00:00 I 0 0.0 compare_states

129.1 alice 8/1 10:09 0+00:00:00 R 0 0.0 compare_states

...

7 jobs; 0 completed, 0 removed, 3 idle, 4 running, 0 held, 0 suspended

33

OSG User School 2025

Monitoring Jobs with condor_q

34

OSG User School 2025

HTCondor — How It Works

2. You submit tasks to

HTCondor on an

Access Point.

Access Point
Execution

Point

Execution

Point

35

3. HTCondor schedules

your tasks to run on

Execution Points

tasks

Execution

Point

1. You create and

describe your tasks

on the Access Point.

OSG User School 2025

Job Idle

(submit_dir)/

 job.submit

 compare_states

 wi.dat

 us.dat

 job.log

 job.out

 job.err

$ condor_q -nobatch

-- Schedd: ap40.uw.osg-htc.org : <128.105.68.62:9618>

 ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

128.0 alice 8/1 10:05 0+00:00:00 I 0 0.0 compare_states wi.dat us.dat

Total for query: 1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended

36

Access Point

OSG User School 2025

$ condor_q -nobatch

-- Schedd: ap40.uw.osg-htc.org : <128.105.68.62:9618>

 ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

128.0 alice 8/1 10:05 0+00:00:00 < 0 0.0 compare_states wi.dat us.dat

Total for query: 1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended

Job Starts

compare_states

wi.dat

us.dat

(execute_dir)/

37

(submit_dir)/

 job.submit

 compare_states

 wi.dat

 us.dat

 job.log

 job.out

 job.err

(execute_dir)/

Access Point Execute Point

OSG User School 2025

$ condor_q -nobatch

-- Schedd: ap40.uw.osg-htc.org : <128.105.68.62:9618>

 ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

128.0 alice 8/1 10:05 0+00:00:00 R 0 0.0 compare_states wi.dat us.dat

Total for query: 1 jobs; 0 completed, 0 removed, 0 idle, 1 running, 0 held, 0 suspended

Job Running

38

(submit_dir)/

 job.submit

 compare_states

 wi.dat

 us.dat

 job.log

 job.out

 job.err

(execute_dir)/

 compare_states

 wi.dat

 us.dat

 stderr

 stdout

 wi.dat.out

 subdir/tmp.dat

Access Point Execute Point

OSG User School 2025

$ condor_q -nobatch

-- Schedd: ap40.uw.osg-htc.org : <128.105.68.62:9618>

 ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

128.0 alice 8/1 10:05 0+00:00:00 > 0 0.0 compare_states wi.dat us.dat

Total for query: 1 jobs; 0 completed, 0 removed, 0 idle, 1 running, 0 held, 0 suspended

Job Completes

stderr

stdout

wi.dat.out

39

(execute_dir)/

 compare_states

 wi.dat

 us.dat

 stderr

 stdout

 wi.dat.out

 subdir/tmp.dat

Access Point Execute Point

(submit_dir)/

 job.submit

 compare_states

 wi.dat

 us.dat

 job.log

 job.out

 job.err

OSG User School 2025

Job Completes (cont.)

40

(submit_dir)/

 job.submit

 compare_states

 wi.dat

 us.dat

 job.log

 job.out

 job.err

 wi.dat.out

Access Point

Job completed →
Disappears from condor_q output!

$ condor_q -nobatch

-- Schedd: ap40.uw.osg-htc.org : <128.105.68.62:9618>

 ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

Total for query: 0 jobs; 0 completed, 0 removed, 0 idle, 0 running, 0 held, 0 suspended

OSG User School 2025

Reviewing Completed Jobs

41

OSG User School 2025

Log File
000 (128.000.000) 2024-08-01 10:05:08 Job submitted from host: <128.104.101.92>

...

001 (128.000.000) 2024-08-01 10:05:46 Job executing on host: <128.104.101.128:9618>

...

006 (128.000.000) 2024-08-01 10:07:54 Image size of job updated: 220

 1 - MemoryUsage of job (MB)

 220 - ResidentSetSize of job (KB)

...

005 (128.000.000) 2024-08-01 10:12:48 Job terminated.

 (1) Normal termination (return value 0)

Usr 0 00:00:00, Sys 0 00:00:00 - Run Remote Usage

 Usr 0 00:00:00, Sys 0 00:00:00 - Run Local Usage

 Usr 0 00:00:00, Sys 0 00:00:00 - Total Remote Usage

 Usr 0 00:00:00, Sys 0 00:00:00 - Total Local Usage

 0 - Run Bytes Sent By Job

 33 - Run Bytes Received By Job

 0 - Total Bytes Sent By Job

 33 - Total Bytes Received By Job

 Partitionable Resources : Usage Request Allocated

Cpus : 1 1

Disk (KB) : 14 20480 17203728

 Memory (MB) : 1 20 20

42

OSG User School 2025

Reviewing Jobs

• To review a large group of jobs at once, use
condor_history

 As condor_q is to the present, condor_history is to the past

$ condor_history alice

 ID OWNER SUBMITTED RUN_TIME ST COMPLETED CMD

189.1012 alice 5/11 09:52 0+00:07:37 C 5/11 16:00 /home/alice

189.1002 alice 5/11 09:52 0+00:08:03 C 5/11 16:00 /home/alice

189.1081 alice 5/11 09:52 0+00:03:16 C 5/11 16:00 /home/alice

189.944 alice 5/11 09:52 0+00:11:15 C 5/11 16:00 /home/alice

189.659 alice 5/11 09:52 0+00:26:56 C 5/11 16:00 /home/alice

189.653 alice 5/11 09:52 0+00:27:07 C 5/11 16:00 /home/alice

189.1040 alice 5/11 09:52 0+00:05:15 C 5/11 15:59 /home/alice

189.1003 alice 5/11 09:52 0+00:07:38 C 5/11 15:59 /home/alice

189.962 alice 5/11 09:52 0+00:09:36 C 5/11 15:59 /home/alice

189.961 alice 5/11 09:52 0+00:09:43 C 5/11 15:59 /home/alice

189.898 alice 5/11 09:52 0+00:13:47 C 5/11 15:59 /home/alice

HTCondor Manual: condor_history 43

http://research.cs.wisc.edu/htcondor/manual/v8.5/condor_history.html

OSG User School 2025

Watching Job Progress with

condor_watch_q

44

OSG User School 2025

Watching Progress of Jobs

• To get a live update of the progress of your jobs, use
condor_watch_q

 This command does an initial condor_q and then tracks the entries of

the corresponding .log file(s)

$ condor_watch_q

BATCH IDLE RUN DONE TOTAL JOB_IDS

ID: 129 10 - - 10 129.0 ... 129.9 [--------------------]

[---]

Total: 10 jobs; 10 idle

Updated at 2024-08-01 10:10:32

Input ^C to exit

HTCondor Manual: condor_watch_q 45

https://htcondor.readthedocs.io/en/latest/man-pages/condor_watch_q.html

OSG User School 2025

Watching Progress of Jobs

• As the work progresses, output updates with changes

to the progress bar
 updates every 2 seconds

$ condor_watch_q

BATCH IDLE RUN DONE TOTAL JOB_IDS

ID: 129 9 1 - 10 129.0 ... 129.9 [==------------------]

[=======--]

Total: 10 jobs; 9 idle, 1 running

Updated at 2024-08-01 10:10:52

Input ^C to exit

HTCondor Manual: condor_watch_q 46

https://htcondor.readthedocs.io/en/latest/man-pages/condor_watch_q.html

OSG User School 2025

Watching Progress of Jobs

• Yellow hyphens (-) = “idle”

• Blue greater than signs (>) = “transferring files”

• Blue equal signs (=) = “running”

• Green number signs (#) = “completed”

• Red exclamation marks (!) = “hold”

$ condor_watch_q

BATCH IDLE RUN DONE TOTAL JOB_IDS

ID: 129 3 4 3 10 129.0 ... 129.9 [######========------]

[######################=============================----------------------]

Total: 10 jobs; 3 completed, 4 idle, 3 running

Updated at 2024-08-01 10:11:52

Input ^C to exit

HTCondor Manual: condor_watch_q 47

https://htcondor.readthedocs.io/en/latest/man-pages/condor_watch_q.html

OSG User School 2025

Watching Progress of Jobs

• To exit out of the condor_watch_q view, use the

keyboard shortcut Ctrl+C

$ condor_watch_q

BATCH IDLE RUN DONE TOTAL JOB_IDS

ID: 129 - - 10 10 129.0 ... 129.9 [####################]

[###]

Total: 10 jobs; 3 completed, 4 idle, 3 running

Updated at 2024-08-01 10:11:52

Input ^C to exit

HTCondor Manual: condor_watch_q 48

https://htcondor.readthedocs.io/en/latest/man-pages/condor_watch_q.html

OSG User School 2025

Questions?

49

	Slide 1: Introduction to Job Submission with HTCondor
	Slide 2: Objective
	Slide 4: History of HTCondor
	Slide 5: HTCondor History and Status
	Slide 6: How does HTCondor work?
	Slide 7: HTCondor — How It Works
	Slide 8: HTCondor — How It Works
	Slide 9: Terminology: Job
	Slide 10: Terminology: Machine, Slot
	Slide 11: Job Matching
	Slide 12: Job Execution
	Slide 13: Basics of submitting jobs
	Slide 14: HTCondor — How It Works
	Slide 15: Terminology: Job
	Slide 16: Components of a job
	Slide 17: Components of a job
	Slide 18: Job Example
	Slide 19: Command for One Task
	Slide 20: HTCondor Submit File
	Slide 21: HTCondor Submit File
	Slide 22: HTCondor Submit File
	Slide 23: HTCondor Submit File
	Slide 24: HTCondor Submit File
	Slide 25: HTCondor Submit File
	Slide 26: HTCondor Submit File
	Slide 27: HTCondor Submit File
	Slide 28: Let’s pause!
	Slide 29: Submitting and monitoring HTCondor jobs
	Slide 30: HTCondor — How It Works
	Slide 31: Submitting and Monitoring
	Slide 32: More about condor_q
	Slide 33: More about condor_q
	Slide 34: Monitoring Jobs with condor_q
	Slide 35: HTCondor — How It Works
	Slide 36: Job Idle
	Slide 37: Job Starts
	Slide 38: Job Running
	Slide 39: Job Completes
	Slide 40: Job Completes (cont.)
	Slide 41: Reviewing Completed Jobs
	Slide 42: Log File
	Slide 43: Reviewing Jobs
	Slide 44: Watching Job Progress with condor_watch_q
	Slide 45: Watching Progress of Jobs
	Slide 46: Watching Progress of Jobs
	Slide 47: Watching Progress of Jobs
	Slide 48: Watching Progress of Jobs
	Slide 49: Questions?

