Checkpointing on OSPool

Showmic Islam
Research Computing Facilitator@ OSG
HPC Application Specialist
Holland Computing Center
University of Nebraska-Lincoln

Outline

What? / Why? \ / How? \

What is checkpointing? Why checkpointing is needed? How to checkpoint?
What jobs are suitable for Different methods for
checkpointing? checkpointing

I
A2

AU cé>/

What?

What is Checkpointing?

* According to ChatGPT- Checkpointing is a
technique to save the state of a computation
so that it can be resumed later without losing

progress.

* Analogy: Saving progress in a game
periodically

* The executable periodically saves its
progress to disk — a self~made checkpoint —
so that it can resume from that point if
iInterrupted later, losing minimal progress

Save game from the Noun Project

Requirement of Jobs

* Ability to checkpoint and restart:

« Checkpoint. Periodically write state to a file on
disk.

* Restart. Code can both find the checkpoint file
and can resume from it.

« Exit. Code exits with a non-zero exit code after
writing a certain number of checkpoints, exits
normally after writing final output.

* (May need a wrapper script to do some of this.)
 Ability to checkpoint sufficiently*

frequently
ﬁ * Varies by code and available resources
5

File by Tanvir Islam from the Noun Project
Gears by Gregor Cresnar from the Noun Project

Why?

when you forget to save
your game before leaving:

» '.1?}",:“’.
s

TSN SN KL

o

Why to Checkpoint

* Interruptions happen:
« Hardware or networking failures

* Cluster/node policy (jobs can only run for 8
hours before getting killed)

 Using opportunistic or backfill resources with
no runtime guarantee

 Self-checkpointing allows you to make
progress through interruptions, especially
for longer-running jobs.

Lightning by Bernar Novalyi from the Noun Project

Characteristics of OSPool

* The maximum allowed job duration on the
OSPool is 20 hours*

« Jobs on the OSPool runs on an opportunistic
manner

* The longer a job runs on OSPool the greater
the probability that your job may get

iInterrupted
« Checkpointing removes the wall-time limit on

the OSPool
« Checkpointing increases the goodput of the

jobs

Jobs run on E @

N |)
- OSPool Member Sites

[Other Resources]

(Cloud, cluster allocations)

J

aptop by Petr Bilek from NounProject.com

ﬁ 9

How?

Ways to Checkpoint

« Exit-driven self-checkpointing
« Since HTCondor = 8.9.7
» Waaaay better for most use cases, esp. in OSG
* What is shown here

» Eviction-driven self-checkpointing
 Not even worth talking about for OSG!
* Documented in the HTCondor Manual
* But don't use it

11

—xecutable Exits After Checkpoint

4 N
@S‘:)} exit(85) [j @?} exit(85) {j {:ci:?} exit(85) {j @gé} exit(0) j

. XN _

* Each executable run:
* Produces checkpoint file(s)
* Exits with a specific code when checkpointing, and a final exit code when done.

* Note that the executable, on its own, won't run a complete execution. It needs
an external process to make it repeat.
© :

Save Checkpoint File/Resume with HTCondor

=

B

{9?} exi

[\

r N

4

e HTCondor will:

B

& =

- (N -

* Restart the executable until the overall calculation is done (exit 0).
* Copy the checkpoint file(s) to a persistent location, to facilitate restarts if the job is

interrupted.

|

Save Checkpoint File/Resume with
HTCondor

B

=

executable =
checkpoint_exit_code = 85

transfer_checkpoint_files = D

=

4%

- ~
. XN

—xample Submit file

//;;;cutable = my software

transfer checkpoint files

log = example.log
error = example.err
output = example.out

checkpoint exit code = 85

transfer input files = my input.txt

checkpoint. txt

transfer output files = my output.txt

~

Job Submitted

Access Point/

Job.submit
executable.py

job.log

16

Job Starts, Executable Starts

Access Point/

Job.submit
executable.py ~—

Jjob.log

Execute Directory/

A

executable.py

_condor stdout
condor stderr

17

-xecutable Checkpoints

Access Point/

Job.submit
executable.py

Jjob.log

Execute Directory/

& o[

executable.py
checkpoint. txt

_condor stdout

_condor stderr

18

-xecutable Exits, Checkpoint Spooled

Access Point/

Jjob.submit Execute Directory/

executable.py l I

job. 1o
] ° executable.py
checkpoint.txt
Spool Directory/ _condor stdout

— condor stderr

checkpoint. txt
_condor stdout -
_condor stderr

—xecutable Started Again

Access Point/

Sob. submit Execute Directory/
executable.py .
D>

Jjob.log executable.py
checkpoint.txt

_condor stdout
_condor stderr

Spool Directory/

checkpoint. txt
_condor stdout
_condor stderr

Checkpoint Cycle Continues

-xecutable Interrupted

Access Point/

Job.submit
executable.py

Jjob.log

Spool Directory/

checkpoint. txt
_condor stdout
_condor stderr

Job Idle

Access Point/

Job.submit
executable.py

Jjob.log

Spool Directory/

checkpoint. txt
_condor stdout
_condor stderr

23

Job Restarts, Executable Restarts

Access Point/
job.submit Execute Directory/

executable.py.~~~~
N>

job.log Poxecutable.py
checkpoint.txt
Spool Directory/ » condor stdout

_condor stderr

checkpoint.txt"”—
_condor stdout —]
_condor stderr

Checkpoint Cycle Continues

Final Execution:

Output

Access Point/

Job.submit
executable.py

Jjob.log

Spool Directory/

checkpoint. txt
_condor stdout
_condor stderr

-xecutable Creates

Execute Directory/

(=D

executable.py
checkpolint.txt
results. txt

__condor_ stdout
_condor stderr

Output Returned

Access Point/

Job.submit
executable.py
checkpoint. txt
results. txt
job.log
job.out
job.err

27

Think About Output Files

« Same mechanisms for transferring output at the end of the job
(triggered by executable's exit 0)

* New output files are transferred back to the submission directory

 To transfer specific output files or directories, use:
transfer output files = filel, outputdir

« ANY output file you want to save between executable iterations
(like a log file), should be included in the list of

transfer checkpoint files

 Older versions of HTCondor may have different default behavior

Testing and Troubleshooting

« Simulate a job interruption:
* condor vacate job JobID

« Examine your checkpoint files in the SPOOL directory:
* Use condor evicted files JobID
* To find the SPOOL directory: condor config val SPOOL

* Look at the HTCondor job log for file transfer information.

Sample Code

Best Practices

e Scaling U :
J+P . Avoid:
 How many jobs will be N ,
checkpointing? - Filling up the SPOOL directory.
« How big are the checkpoint files? - Transferring large checkpoint
« How much data is that total? files.
« Checkpoint Freq_uency Avoid:
 How long does it take to produce a : :
checkpoint and resume? - Spending more time
* How likely is your job to be checkpointing than running.
interrupted? - Jobs that will never reach a
checkpoint.

Alternative Checkpointing Method

* [f code can't exit after each checkpoint, but only run +
checkpoint continuously, transfer of checkpoint files can
be triggered by eviction.

« Search for "when_to transfer output” on the

condor submit manual page; read about ON EXIT OR
EVICT

* This method of backing up checkpoint files is less
resilient, as it won't work for other job interruption
reasons (hardware issues, killed processes, held jobs)

https://htcondor.readthedocs.io/en/latest/man-pages/condor_submit.html

Resources

« HTCondor Manual

« Manual > Users' Manual > Self Checkpointing Applications
e https://htcondor.readthedocs.io/en/latest/users-manual/self-
checkpointing-applications.html

 Materials from the OSG Virtual School 2021

« OSG Virtual School > Materials > Overview or Checkpointing Exercises

* https://opensciencegrid.org/virtual-school-2021/materials/#self-
checkpointing-for-long-running-jobs

https://htcondor.readthedocs.io/en/latest/users-manual/self-checkpointing-applications.html
https://htcondor.readthedocs.io/en/latest/users-manual/self-checkpointing-applications.html
https://htcondor.readthedocs.io/en/latest/users-manual/self-checkpointing-applications.html
https://htcondor.readthedocs.io/en/latest/users-manual/self-checkpointing-applications.html
https://htcondor.readthedocs.io/en/latest/users-manual/self-checkpointing-applications.html
https://htcondor.readthedocs.io/en/latest/users-manual/self-checkpointing-applications.html
https://htcondor.readthedocs.io/en/latest/users-manual/self-checkpointing-applications.html
https://htcondor.readthedocs.io/en/latest/users-manual/self-checkpointing-applications.html
https://opensciencegrid.org/virtual-school-2021/materials/#self-checkpointing-for-long-running-jobs
https://opensciencegrid.org/virtual-school-2021/materials/#self-checkpointing-for-long-running-jobs
https://opensciencegrid.org/virtual-school-2021/materials/#self-checkpointing-for-long-running-jobs
https://opensciencegrid.org/virtual-school-2021/materials/#self-checkpointing-for-long-running-jobs
https://opensciencegrid.org/virtual-school-2021/materials/#self-checkpointing-for-long-running-jobs
https://opensciencegrid.org/virtual-school-2021/materials/#self-checkpointing-for-long-running-jobs
https://opensciencegrid.org/virtual-school-2021/materials/#self-checkpointing-for-long-running-jobs
https://opensciencegrid.org/virtual-school-2021/materials/#self-checkpointing-for-long-running-jobs
https://opensciencegrid.org/virtual-school-2021/materials/#self-checkpointing-for-long-running-jobs
https://opensciencegrid.org/virtual-school-2021/materials/#self-checkpointing-for-long-running-jobs
https://opensciencegrid.org/virtual-school-2021/materials/#self-checkpointing-for-long-running-jobs
https://opensciencegrid.org/virtual-school-2021/materials/#self-checkpointing-for-long-running-jobs
https://opensciencegrid.org/virtual-school-2021/materials/#self-checkpointing-for-long-running-jobs
https://opensciencegrid.org/virtual-school-2021/materials/#self-checkpointing-for-long-running-jobs
https://opensciencegrid.org/virtual-school-2021/materials/#self-checkpointing-for-long-running-jobs
https://opensciencegrid.org/virtual-school-2021/materials/#self-checkpointing-for-long-running-jobs

Acknowledgements

Todd L Miller; Christina Koch; Tim Cartwright

This work is supported by NSF under Grant Nos. 2030508,
1836650, and 1148698.

34

Questions?

	Slide 1: Checkpointing on OSPool
	Slide 2: Outline
	Slide 3
	Slide 4: What is Checkpointing?
	Slide 5: Requirement of Jobs
	Slide 6
	Slide 7
	Slide 8: Why to Checkpoint
	Slide 9: Characteristics of OSPool
	Slide 10
	Slide 11: Ways to Checkpoint
	Slide 12: Executable Exits After Checkpoint
	Slide 13: Save Checkpoint File/Resume with HTCondor
	Slide 14: Save Checkpoint File/Resume with HTCondor
	Slide 15: Example Submit file
	Slide 16: Job Submitted
	Slide 17: Job Starts, Executable Starts
	Slide 18: Executable Checkpoints
	Slide 19: Executable Exits, Checkpoint Spooled
	Slide 20: Executable Started Again
	Slide 21: Checkpoint Cycle Continues
	Slide 22: Executable Interrupted
	Slide 23: Job Idle
	Slide 24: Job Restarts, Executable Restarts
	Slide 25: Checkpoint Cycle Continues
	Slide 26: Final Execution: Executable Creates Output
	Slide 27: Output Returned
	Slide 28: Think About Output Files
	Slide 29: Testing and Troubleshooting
	Slide 30: Sample Code
	Slide 31: Best Practices
	Slide 32: Alternative Checkpointing Method
	Slide 33: Resources
	Slide 34: Acknowledgements
	Slide 35

