
Profiling Applications to Choose the
Right Computing Infrastructure plus Batch

Management with HTCondor

DOSAR
Original slides by: Rob Quick rquick@iu.edu

Content Contributed by the University of Wisconsin
Condor Team and Scot Kronenfeld

mailto:rquick@iu.edu

2012 Africa Grid School

Follow Along at:

https://osg-htc.org/dosar/ASP2024/ASP2024_Materials/

2

https://osg-htc.org/dosar/ASP2024/ASP2024_Materials/

2012 Africa Grid School

Some thoughts on the exercises

• It’s okay to move ahead on exercises if
you have time

• It’s okay to take longer on them if you
need to

• If you move along quickly, try the “On
Your Own” sections and “Challenges”

3

2012 Africa Grid School

Most important!

• Please ask us questions!
…during the lectures
…during the exercises
…during the breaks
…during the meals
…over dinner
…via email after we depart (see below)

• If I don’t know, I’ll find the right person
to answer your question.

4

2012 Africa Grid School

Goals for this session

• Profiling your application
• Picking the appropriate resources
• Understand the basics of HTCondor

5

2012 Africa Grid School

Let’s take one step at a time

• Can you run one job on one
computer?

• Can you run one job on another
computer?

• Can you run 10 jobs on a set of
computers?

• Can you run a multiple job workflow?
• How do we put this all together?

This is the path we’ll take in the school

6

Small

Large

Local

Distributed

2012 Africa Grid School

What does the user provide?

• A “headless job”
- Not interactive/no GUI: how could you interact with

1000 simultaneous jobs?
• A set of input files
• A set of output files
• A set of parameters (command-line arguments)
• Requirements:

- Ex: My job requires at least 2GB of RAM
- Ex: My job requires Linux

• Control/Policy:
- Ex: Send me email when the job is done
- Ex: Job 2 is more important than Job 1
- Ex: Kill my job if it runs for more than 6 hours

7

2012 Africa Grid School

What does the system provide?

• Methods to:
- Submit/Cancel job
- Check on state of job
- Check on state of available computers

• Processes to:
- Reliably track set of submitted jobs
- Reliably track set of available computers
- Decide which job runs on which computer
- Manage a single computer
- Start up a single job

8

2012 Africa Grid School

Gedankenexperiment

• Let’s assume you have a ‘large job’
- What factors could make it large?

• Large Data Input or Output or both
• Needs to do heavy calculation
• Needs a lot of memory
• Needs to communicate with other jobs

(whether required or not)
• Reads and writes a lot of data/files
• Heavy graphics processing
• Any combination of any of the above

9

2012 Africa Grid School

There is no
“One Size Fits All Solution”

• But some solutions are more ”Open”
than others.
- Local Laptop/Desktop
- Local Cluster
- HPC System
- Shared HTC Resources
- Clouds

10

2012 Africa Grid School

Why is HTC hard?

• The HTC system has to keep track of:
- Individual tasks (a.k.a. jobs) & their inputs
- Computers that are available

• The system has to recover from failures
- There will be failures! Distributed computers means more

chances for failures.
• You have to share computers

§ Sharing can be within an organization, or between orgs
§ So you have to worry about security
§ And you have to worry about policies on how you share

• If you use a lot of computers, you have to handle variety:
- Different kinds of computers (arch, OS, speed, etc..)
- Different kinds of storage (access methodology, size, speed,

etc…)
- Different networks interacting (network problems are hard to

debug!)

11

2012 Africa Grid School

Surprise!
HTCondor does this (and more)

• Methods to:
- Submit/Cancel job. condor_submit/condor_rm
- Check on state of job. condor_q
- Check on state of avail. computers. condor_status

• Processes to:
- Reliably track set of submitted jobs. schedd
- Reliably track set of avail. computers. collector
- Decide which job runs on where. negotiator
- Manage a single computer startd
- Start up a single job starter

12

2012 Africa Grid School

But not only Condor

• You can use other systems:
- PBS/Torque
- Oracle Grid Engine (né Sun Grid Engine)
- LSF
- SLURM
- …

• But I won’t cover them.
- My experience is with Condor
- My bias is with Condor
- Overlays exist

• What should you learn at the school?
- How do you think about Computing Resources?
- How can you do your science with HTC?
- … For now, learn it with Condor, but you can apply it to

other systems.

13

2012 Africa Grid School

A brief introduction to Condor

• Please note, we will only scratch the
surface of Condor:
- We won’t cover MPI, Master-Worker,

advanced policies, site administration,
security mechanisms, submission to other
batch systems, virtual machines, cron,
high-availability, computing on demand,
containers.

14

2012 Africa Grid School

…And matches themCondor Takes Computers…

Dedicated Clusters Desktop Computers

…
I need a Mac!

I need a Linux box
with 2GB RAM!

Matchmaker

2012 Africa Grid School

Quick Terminology

• Cluster: A dedicated set of computers not for
interactive use

• Pool: A collection of computers used by Condor
- May be dedicated
- May be interactive

• Remember:
- Condor can manage a cluster in a machine room
- Condor can use desktop computers
- Condor can access remote computers
- HTC uses all available resources

2012 Africa Grid School

Matchmaking

• Matchmaking is fundamental to Condor
• Matchmaking is two-way

- Job describes what it requires:
 I need Linux && 8 GB of RAM
- Machine describes what it requires:
 I will only run jobs from the Physics department

• Matchmaking allows preferences
- I need Linux, and I prefer machines with more

memory but will run on any machine you provide me

2012 Africa Grid School

Why Two-way Matching?

• Condor conceptually divides people into
three groups:
- Job submitters
- Computer owners
- Pool (cluster) administrator

• All three of these groups have
preferences

} May or may not
be the same
people

2012 Africa Grid School

ClassAds

• ClassAds state facts
- My job’s executable is analysis.exe
- My machine’s load average is 5.6

• ClassAds state preferences
- I require a computer with Linux

• ClassAds are extensible
- They say whatever you
want them to say

2012 Africa Grid School

Example ClassAd

MyType = "Job"

TargetType = "Machine"

ClusterId = 1377

Owner = "roy“
Cmd = “analysis.exe“
Requirements =

 (Arch == "INTEL")

&& (OpSys == "LINUX")

&& (Disk >= DiskUsage)

&& ((Memory * 1024)>=ImageSize)
…

String

Number

Expression

2012 Africa Grid School

Schema-free ClassAds

• Condor imposes some schema
- Owner is a string, ClusterID is a number…

• But users can extend it however they like, for
jobs or machines
- AnalysisJobType = “simulation”
- HasJava_1_6 = TRUE
- ShoeLength = 10

• Matchmaking can use these attributes
- Requirements = OpSys == "LINUX"

 && HasJava_1_6 == TRUE

2012 Africa Grid School

Don’t worry

• You won’t write ClassAds (usually)
- You’ll create a simple submit file
- Condor will write the ClassAd
- You can extend the ClassAd if you want to

• You won’t write requirements (usually)
- Condor writes them for you
- You can extend them
- In some environments you provide

attributes instead of requirements
expressions

22

2012 Africa Grid School

Matchmaking
Service

Job queue service

Information
service

Matchmaking diagram

condor_schedd

Queue

Matchmaker
CollectorNegotiator

12

3

2012 Africa Grid School

Why do jobs fail?

• The computer running the job fails
- Or the network, or the disk, or the OS, or…

• Your job might be preempted:
- Condor decides your job is less important

than another, so your job is stopped and
another started.

- Not a “failure” per se, but it may feel like it
to you.

24

2012 Africa Grid School

Reliability

• When a job fails or is preempted:
- It stays in the queue (on the schedd)
- A note is written to the job log file
- It reverts to “idle” state
- It is eligible to be matched again

• Relax! Condor will run your job again

25

2012 Africa Grid School

Access to data in Condor

• Option #1: Shared filesystem
- Simple to use, but make sure your filesystem can

handle the load
• Option #2: Condor’s file transfer

- Can automatically send back changed files
- Atomic transfer of multiple files
- Can be encrypted over the wire
- Most common for small applications and

data
• Option #3: Remote I/O

26

2012 Africa Grid School

Universe = vanilla
Executable = my_job
Log = my_job.log
ShouldTransferFiles = YES
Transfer_input_files = dataset$(Process), common.data
Queue 600

Condor File Transfer

• ShouldTransferFiles = YES

- Always transfer files to execution site
• ShouldTransferFiles = NO

- Rely on a shared filesystem
• ShouldTransferFiles = IF_NEEDED

- Will automatically transfer the files if needed

27

2012 Africa Grid School

Condor File Transfer with URLs

• Transfer_input_files can be a URL
For example:

28

transfer_input_files = http://www.example.com/input.data

2012 Africa Grid School

Clusters & Processes

• One submit file can describe lots of jobs
- All the jobs in a submit file are a cluster of jobs
- Yeah, same term as a cluster of computers

• Each cluster has a unique “cluster number”
• Each job in a cluster is called a “process”
• A Condor “job ID” is the cluster number, a period,

and the process number (“20.1”)
• A cluster is allowed to have one or more

processes.
- There is always a cluster for every job

29

2012 Africa Grid School

The $(Process) macro

• The initial directory for each job can be
specified as run_$(Process), and instead of
submitting a single job, we use “Queue 600” to
submit 600 jobs at once

• The $(Process) macro will be expanded to the
process number for each job in the cluster (0 -
599), so we’ll have “run_0”, “run_1”, …
“run_599” directories

• All the input/output files will be in different
directories!

30

2012 Africa Grid School

Example of $(Process)

Example condor_submit input file that defines
a cluster of 600 jobs with different directories
Universe = vanilla
Executable = my_job
Log = my_job.log
Arguments = -arg1 –arg2
Input = my_job.stdin
Output = my_job.stdout
Error = my_job.stderr
InitialDir = run_$(Process) run_0 … run_599
Queue 600 Creates job 3.0 … 3.599

31

2012 Africa Grid School

More $(Process)

• You can use $(Process) anywhere:
Universe = vanilla
Executable = my_job
Log = my_job.$(Process).log
Arguments = -randomseed $(Process)
Input = my_job.stdin
Output = my_job.stdout
Error = my_job.stderr
InitialDir = run_$(Process)

Queue 600

32

2012 Africa Grid School

Sharing a directory

• You don’t have to use separate
directories.

• $(Cluster) will help distinguish runs
Universe = vanilla
Executable = my_job
Arguments = -randomseed $(Process)
Input = my_job.input.$(Process)
Output = my_job.stdout.$(Cluster).$(Process)
Error = my_job.stderr.$(Cluster).$(Process)
Log = my_job.$(Cluster).$(Process).log
Queue 600

33

2012 Africa Grid School

Not Only
Programming Language

• You ran a C program this morning
• You can also run scripting languages such

as bash, python, and perl
• You can also executing programs via the

command like R

34

2012 Africa Grid School

Day One Wrap Up Notes

• There are several different computing
environments

• There is a very diverse set of computing
jobs

• Matching jobs to resources is key to not
wasting resources

• Not all of the available environments are
open environments

• Research Computing is Complex

35

2012 Africa Grid School

Quick UNIX Refresher
Before We Start

• $
• nano, vi, emacs, cat >, etc.
• source, module, chmod, ls

36

2012 Africa Grid School

That was a whirlwind tour!

• Enough with the presentation: let’s use
HTCondor!

37

• Goal: Extend the
diversity of our jobs and
add some data to the
mix.

2012 Africa Grid School

Questions?

• Questions? Comments?
- Feel free to ask us questions now or later:
- Julia Gray julia.ann.gray@gmail.com
- Horst Severini severini@ou.edu
- Pat Skubic pskubic@ou.edu
Exercises start here:
https://osg-htc.org/dosar/ASP2024/ASP2024_Materials/
Presentations are also available from this

URL.

 38

mailto:julia.ann.gray@gmail.com
mailto:severini@ou.edu
mailto:pskubic@ou.edu
https://osg-htc.org/dosar/ASP2024/ASP2024_Materials/

