
Workflows

DOSAR
Original slides by: Rob Quick <rquick@iu.edu>

Some Slides Contributed by the University of
Wisconsin HTCondor Team and Scot Kronenfeld

2012 Africa Grid School

Before we begin…

• Any questions on the lectures or
exercises up to this point?

2

2012 Africa Grid School

Remember

• All materials are available from:
• https://osg-htc.org/dosar/ASP2022/ASP2022_Materials/

3

https://osg-htc.org/dosar/ASP2022/ASP2022_Materials/

2012 Africa Grid School

Workflows

• What if you have a complex set of
programs to run for your science?

• For example:
- You want to analyze a set of images
- Each image needs to be pre-processed
- Each image needs to be analyzed
- You need to summarize the results of all

the analyses
- Each of these is done with a separate

application
4

2012 Africa Grid School

Workflows

One Image:

5

Pre-process

Analyze

Pre-process

Analyze

Three Images:
Pre-process

Analyze

Pre-process

Analyze

Summarize

2012 Africa Grid School

Workflows: definition

Definition 1:
A set of steps to complete a complex task

Definition 2:
A graph of jobs to run: some jobs need to
run before others while other jobs can run
in parallel

6

2012 Africa Grid School

Example of a LIGO Inspiral DAG

7

2012 Africa Grid School

Use of Condor by the LIGO
Scientific Collaboration

• Condor handles 10’s of millions of jobs per year
running on the LDG, and up to 500k jobs per DAG.
• Condor standard universe check pointing widely
used, saving us from having to manage this.
• At Caltech, 30 million jobs processed using 22.8
million CPU hrs. on 1324 CPUs in last 30 months.
• For example, to search 1 yr. of data for GWs from
the inspiral of binary neutron star and black hole
systems takes ~2 million jobs, and months to run on
several thousand ~2.6 GHz nodes.

(Statement from 2010—”last 30 months” isn’t from now. Also, I think
they do up to 1 million jobs per DAG now.)

8

2012 Africa Grid School

Example workflow:
Bioinformatics

9

From Mason, Sanders, State (Yale)
http://pegasus.isi.edu/applications/association_test

2012 Africa Grid School

Example workflow: Astronomy

10

From Berriman & Good (JPAC)
http://pegasus.isi.edu/applications/galactic-plane

2012 Africa Grid School

DAGMan
• DAGMan:

Directed Acyclic Graph (DAG)
Manager (Man)

• Allows you to specify the dependencies
between your jobs

• Manages the jobs and their dependencies

• That is, it manages a workflow of jobs

11

2012 Africa Grid School

What is a DAG?
• A DAG is the structure used by

DAGMan to represent these
dependencies.

• Each job is a node in the DAG.

• Each node can have any number of
“parent” or “children” nodes – as
long as there are no loops!

A

B C

D

OK:

A

B C

Not OK:

12

2012 Africa Grid School

Defining a DAG

• A DAG is defined by a .dag file, listing each of its nodes
and their dependencies. For example:
Job A a.sub
Job B b.sub
Job C c.sub
Job D d.sub

Parent A Child B C
Parent B C Child D

Job A

Job B Job C

Job D

13

2012 Africa Grid School

DAG Files….

• This complete DAG has five files

Job A a.sub

Job B b.sub
Job C c.sub

Job D d.sub

Parent A Child B C

Parent B C Child D

One DAG File: Four Submit Files:

Universe = Vanilla

Executable = analysis…

Universe = …

14

2012 Africa Grid School

Submitting a DAG

• To start your DAG, just run condor_submit_dag with
your .dag file, and Condor will start a DAGMan process
to manage your jobs:

% condor_submit_dag diamond.dag

• condor_submit_dag submits a Scheduler Universe job
with DAGMan as the executable

• Thus the DAGMan daemon itself runs as a Condor job,
so you don’t have to baby-sit it

15

2012 Africa Grid School

DAGMan

Running a DAG

• DAGMan acts as a scheduler, managing the
submission of your jobs to Condor based on the
DAG dependencies

Condor
Job
Queue

B C

D

A

A

.dag
File

16

2012 Africa Grid School

DAGMan

Running a DAG (cont’d)

• DAGMan submits jobs to Condor at the
appropriate times

• For example, after A finishes, it submits B & C

Condor
Job
Queue

C

D

B

C

B

A

17

2012 Africa Grid School

DAGMan

Running a DAG (cont’d)

• A job fails if it exits with a non-zero exit code
• In case of a job failure, DAGMan runs other jobs until it

can no longer make progress, and then creates a
“rescue” file with the current state of the DAG

Condor
Job
Queue

X

D

A

B
Rescue
File

18

2012 Africa Grid School

DAGMan

Recovering a DAG

• Once the failed job is ready to be re-run, the
rescue file can be used to restore the prior state
of the DAG
- Another example of reliability for HTC!

Condor
Job
Queue

C

D

A

B
Rescue
File

C

19

2012 Africa Grid School

DAGMan

Recovering a DAG (cont’d)

• Once that job completes, DAGMan will continue
the DAG as if the failure never happened

Condor
Job
Queue

C

D

A

B

D

20

2012 Africa Grid School

DAGMan

Finishing a DAG

• Once the DAG is complete, the DAGMan job
itself is finished, and exits

Condor
Job
Queue

C

D

A

B

21

2012 Africa Grid School

DAGMan & Fancy Features

• DAGMan doesn’t have a lot of “fancy
features”
- No loops
- Not much assistance in writing very large

DAGs (script it yourself)
• Focus is on solid core

- Add the features people need in order to
run large DAGs well

- People build systems on top of DAGMan

22

2012 Africa Grid School

Related Software

Pegasus: http://pegasus.isi.edu/
- Writes DAGs based on abstract description
- Runs DAG on appropriate resource (Condor, OSG,

EC2…)
- Locates data, coordinates execution
- Uses DAGMan, works with large workflows

Makeflow: http://nd.edu/~ccl/software/makeflow/
- User writes make file, not DAG
- Works with Condor, SGE, Work Queue…
- Handles data transfers to remote systems
- Does not use DAGMan

23

http://pegasus.isi.edu/
http://nd.edu/~ccl/software/makeflow/

2012 Africa Grid School

DAGMan: Reliability
• For each job, Condor generates a log file
• DAGMan reads this log to see what has happened
• If DAGMan dies (crash, power failure, etc…)

- Condor will restart DAGMan
- DAGMan re-reads log file
- DAGMan knows everything it needs to know
- Principle: DAGMan can recover state from files and

without relying on a service (Condor queue,
database…)

• Recall: HTC requires reliability!

24

2012 Africa Grid School

Advanced DAGMan Tricks

• Throttles
• DAGs without dependencies
• Sub-DAGs
• Pre and Post scripts: editing your DAG

25

2012 Africa Grid School

Throttles

• Failed nodes can be automatically retried
a configurable number of times
- Helps recover from jobs that crash some

percentage of the time
• Throttles to control job submissions

- Max jobs submitted
- Max scripts running
- These are important when working with large

DAGs

26

2012 Africa Grid School

DAGs without dependencies

• Submit DAG with:
- 200,000 nodes
- No dependencies

• Use DAGMan to throttle the job
submissions:
- Condor is scalable, but it will have

problems if you submit 200,000 jobs
simultaneously

- DAGMan can help you with scalability even
if you don’t have dependencies

A1 A2 A3 …

27

2012 Africa Grid School

Sub-DAG
• Idea: any given DAG node can be another

DAG
- SUBDAG External Name DAG-file

• DAG node will not complete until sub-dag
finishes

• Interesting idea: A previous node could
generate this DAG node

• Why?
- Simpler DAG structure
- Implement a fixed-length loop
- Modify behavior on the fly

28

2012 Africa Grid School

Sub-DAG

A

B C

D

V W

Z

X Y

29

2012 Africa Grid School

DAGMan scripts

• DAGMan allows pre & post scripts
- Run before (pre) or after (post) job
- Run on the same computer you submitted from
- Don’t have to be scripts: any executable

• Syntax:
JOB A a.sub

SCRIPT PRE A before-script $JOB
SCRIPT POST A after-script $JOB $RETURN

30

2012 Africa Grid School

So What?
• Pre script can make decisions

- Where should my job run? (Particularly useful to
make job run in same place as last job.)

- What should my job do?
- Generate Sub-DAG

• Post script can change return value
- DAGMan decides job failed in non-zero return value
- Post-script can look at {error code, output files, etc}

and return zero or non-zero based on deeper
knowledge.

31

2012 Africa Grid School

Quick UNIX Refresher
Before We Start

• $
• nano, vi, emacs, cat >, etc.
• module, scp, cp, watch, cat, ls,
rm

32

2012 Africa Grid School

Let’s try it out!

• Exercises with DAGMan.

33

2012 Africa Grid School

Questions?

• Questions? Comments?

• Feel free to ask us questions now or
later:
Horst Severini hs@nhn.ou.edu
Pat Skubic pskubic@ou.edu
Jae Yu jaehoonyu1@gmail.com

Materials available from:
https://osg-htc.org/dosar/ASP2022/ASP2022_Materials/

34

mailto:hs@nhn.ou.edu
mailto:pskubic@ou.edu
http://jaehoonyu1@gmail.com
https://osg-htc.org/dosar/ASP2022/ASP2022_Materials/

